TY - JOUR
T1 - Compensatory mechanisms activated with intermittent energy restriction
T2 - A randomized control trial
AU - Coutinho, Sílvia Ribeiro
AU - Halset, Eline Holli
AU - Gåsbakk, Sigrid
AU - Rehfeld, Jens F.
AU - Kulseng, Bård
AU - Truby, Helen
AU - Martins, Catia Vanessa Garcia
PY - 2018/6
Y1 - 2018/6
N2 - Background & aims: Strong compensatory responses, with reduced resting metabolic rate (RMR), increased exercise efficiency (ExEff) and appetite, are activated when weight loss (WL) is achieved with continuous energy restriction (CER), which try to restore energy balance. Intermittent energy restriction (IER), where short spells of energy restriction are interspaced by periods of habitual energy intake, may offer some protection in minimizing those responses. We aimed to compare the effect of IER versus CER on body composition and the compensatory responses induced by WL. Methods: 35 adults (age: 39 ± 9 y) with obesity (BMI: 36 ± 4 kg/m2) were randomized to lose a similar weight with an IER (N = 18) or a CER (N = 17) diet over a 12 week period. Macronutrient composition and overall energy restriction (33% reduction) were similar between groups. Body weight/composition, RMR, fasting respiratory quotient (RQ), ExEff (10, 25, and 50 W), subjective appetite ratings (hunger, fullness, desire to eat, and prospective food consumption (PFC)), and appetite-regulating hormones (active ghrelin (AG), cholecystokinin (CCK), total peptide YY (PYY), active glucagon-like peptide-1 (GLP-1), and insulin) were measured before and after WL. Results: Changes in body weight (≈12.5% WL) and composition were similar in both groups. Fasting RQ and ExEff at 10 W increased in both groups. Losing weight, either by IER or CER dieting, did not induce significant changes in subjective appetite ratings. RMR decreased and ExEff at 25 and 50 W increased (P < 0.001 for all) in IER group only. Basal and postprandial AG increased (P < 0.05) in IER group, whereas basal active GLP-1 decreased (P = 0.033) in CER group only. Postprandial CCK decreased in both groups (P = 0.0012 and P = 0.009 for IER and CER groups, respectively). No between group differences were apparent for any of the outcomes. Conclusions: The technique used to achieve energy restriction, whether it is continuous or intermittent, does not appear to modulate the compensatory mechanisms activated by weight loss. Clinical Trial Registration number: NCT01912742 (the study was registered in clinicaltrial.gov).
AB - Background & aims: Strong compensatory responses, with reduced resting metabolic rate (RMR), increased exercise efficiency (ExEff) and appetite, are activated when weight loss (WL) is achieved with continuous energy restriction (CER), which try to restore energy balance. Intermittent energy restriction (IER), where short spells of energy restriction are interspaced by periods of habitual energy intake, may offer some protection in minimizing those responses. We aimed to compare the effect of IER versus CER on body composition and the compensatory responses induced by WL. Methods: 35 adults (age: 39 ± 9 y) with obesity (BMI: 36 ± 4 kg/m2) were randomized to lose a similar weight with an IER (N = 18) or a CER (N = 17) diet over a 12 week period. Macronutrient composition and overall energy restriction (33% reduction) were similar between groups. Body weight/composition, RMR, fasting respiratory quotient (RQ), ExEff (10, 25, and 50 W), subjective appetite ratings (hunger, fullness, desire to eat, and prospective food consumption (PFC)), and appetite-regulating hormones (active ghrelin (AG), cholecystokinin (CCK), total peptide YY (PYY), active glucagon-like peptide-1 (GLP-1), and insulin) were measured before and after WL. Results: Changes in body weight (≈12.5% WL) and composition were similar in both groups. Fasting RQ and ExEff at 10 W increased in both groups. Losing weight, either by IER or CER dieting, did not induce significant changes in subjective appetite ratings. RMR decreased and ExEff at 25 and 50 W increased (P < 0.001 for all) in IER group only. Basal and postprandial AG increased (P < 0.05) in IER group, whereas basal active GLP-1 decreased (P = 0.033) in CER group only. Postprandial CCK decreased in both groups (P = 0.0012 and P = 0.009 for IER and CER groups, respectively). No between group differences were apparent for any of the outcomes. Conclusions: The technique used to achieve energy restriction, whether it is continuous or intermittent, does not appear to modulate the compensatory mechanisms activated by weight loss. Clinical Trial Registration number: NCT01912742 (the study was registered in clinicaltrial.gov).
KW - Appetite
KW - Body composition
KW - Continuous energy restriction
KW - Energy expenditure
KW - Intermittent energy restriction
KW - Weight loss
U2 - 10.1016/j.clnu.2017.04.002
DO - 10.1016/j.clnu.2017.04.002
M3 - Journal article
C2 - 28446382
AN - SCOPUS:85018779877
SN - 0261-5614
VL - 37
SP - 815
EP - 823
JO - Clinical Nutrition
JF - Clinical Nutrition
IS - 3
ER -