Compact and accurate linear and nonlinear autoregressive moving average model parameter estimation using laguerre functions.

K H Chon, R J Cohen, N H Holstein-Rathlou

11 Citations (Scopus)

Abstract

A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre function remain with our algorithm; but, by extending the algorithm to the linear and nonlinear ARMA model, a significant reduction in the number of Laguerre functions can be made, compared with the Volterra-Wiener approach. This translates into a more compact system representation and makes the physiological interpretation of higher order kernels easier. Furthermore, simulation results show better performance of the proposed approach in estimating the system dynamics than LEK in certain cases, and it remains effective in the presence of significant additive measurement noise.
Original languageEnglish
JournalAnnals of Biomedical Engineering
Volume25
Issue number4
Pages (from-to)731-8
Number of pages7
ISSN0090-6964
Publication statusPublished - 1997

Fingerprint

Dive into the research topics of 'Compact and accurate linear and nonlinear autoregressive moving average model parameter estimation using laguerre functions.'. Together they form a unique fingerprint.

Cite this