Coexistence of structured populations with size-based prey selection

Martin Hartvig, Ken Haste Andersen

27 Citations (Scopus)

Abstract

Species with a large adult-offspring size ratio and a preferred predator-prey mass ratio undergo ontogenetic trophic niche shift(s) throughout life. Trophic interactions between such species vary throughout life, resulting in different species-level interaction motifs depending on the maximum adult sizes and population size distributions. We explore the assembly and potential for coexistence of small communities where all species experience ontogenetic trophic niche shifts. The life-history of each species is described by a physiologically structured model and species identity is characterised by the trait: size at maturation. We show that a single species can exist in two different states: a 'resource driven state' and a 'cannibalistic state' with a large scope for emergent Allee effects and bistable states. Two species can coexist in two different configurations: in a 'competitive coexistence' state when the ratio between sizes at maturation of the two species is less than a predator-prey mass ratio and the resource level is low to intermediate, or in a 'trophic ladder' state if the ratio of sizes at maturation is larger than the predator-prey mass ratio at all resource levels. While there is a large scope for coexistence of two species, the scope for coexistence of three species is limited and we conclude that further trait differentiation is required for coexistence of more species-rich size-structured communities.

Original languageEnglish
JournalTheoretical Population Biology
Volume89
Pages (from-to)24-33
Number of pages10
ISSN0040-5809
DOIs
Publication statusPublished - Nov 2013

Fingerprint

Dive into the research topics of 'Coexistence of structured populations with size-based prey selection'. Together they form a unique fingerprint.

Cite this