Characteristics of meiofauna in extreme marine ecosystems: a review

Daniela Zeppilli, Daniel Leduc, Christophe Fontainer, Diego Fontaneto, Sandra Fuchs, Andrew J. Gooday, Aurelie Goineau, Jeroen Ingels, Viatcheslav N. Ivanenko, Reinhardt Møbjerg Kristensen, Ricardo Neves, Nuria Sánchez, Roberto Sandulli, Jozée Sarrazin, Martin Vinther Sørensen, Aurelie Tasiemski, Ann Vanreusel, Marine Autret, Louis Bourdonnay, Marion ClaireauxValerie Coquille, Lisa De Wever, Durand Rachel, James Marchant, Lola Toomey, David Fernandes

    52 Citations (Scopus)
    91 Downloads (Pure)

    Abstract

    Extreme marine environments cover more than 50% of the Earth’s surface and offer many opportunities for investigating the biological responses and adaptations of organisms to stressful life conditions. Extreme marine environments are sometimes associated with ephemeral and unstable ecosystems, but can host abundant, often endemic and well-adapted meiofaunal species. In this review, we present an integrated view of the biodiversity, ecology and physiological responses of marine meiofauna inhabiting several extreme marine environments (mangroves, submarine caves, Polar ecosystems, hypersaline areas, hypoxic/anoxic environments, hydrothermal vents, cold seeps, carcasses/sunken woods, deep-sea canyons, deep hypersaline anoxic basins [DHABs] and hadal zones). Foraminiferans, nematodes and copepods are abundant in almost all of these habitats and are dominant in deep-sea ecosystems. The presence and dominance of some other taxa that are normally less common may be typical of certain extreme conditions. Kinorhynchs are particularly well adapted to cold seeps and other environments that experience drastic changes in salinity, rotifers are well represented in polar ecosystems and loriciferans seem to be the only metazoan able to survive multiple stressors in DHABs. As well as natural processes, human activities may generate stressful conditions, including deoxygenation, acidification and rises in temperature. The behaviour and physiology of different meiofaunal taxa, such as some foraminiferans, nematode and copepod species, can provide vital information on how organisms may respond to these challenges and can provide a warning signal of anthropogenic impacts. From an evolutionary perspective, the discovery of new meiofauna taxa from extreme environments very often sheds light on phylogenetic relationships, while understanding how meiofaunal organisms are able to survive or even flourish in these conditions can explain evolutionary pathways. Finally, there are multiple potential economic benefits to be gained from ecological, biological, physiological and evolutionary studies of meiofauna in extreme environments. Despite all the advantages offered by meiofauna studies from extreme environments, there is still an urgent need to foster meiofauna research in terms of composition, ecology, biology and physiology focusing on extreme environments.

    Original languageEnglish
    JournalMarine Biodiversity
    Volume48
    Issue number1
    Pages (from-to)35-71
    Number of pages37
    ISSN1867-1616
    DOIs
    Publication statusPublished - 1 Mar 2018

    Fingerprint

    Dive into the research topics of 'Characteristics of meiofauna in extreme marine ecosystems: a review'. Together they form a unique fingerprint.

    Cite this