Abstract
Introduction: Alterations in circulating large neutral amino acids (LNAAs), leading to a decrease in the plasma ratio between branched-chain and aromatic amino acids (BCAA/AAA ratio), may be involved in sepsis-associated encephalopathy. We hypothesised that a decrease in the BCAA/AAA ratio occurs along with a net cerebral influx of the neurotoxic AAA phenylalanine in a human experimental model of systemic inflammation.Methods: The BCAA/AAA ratio, the cerebral delivery, and net exchange of LNAAs and ammonia were measured before and 1 hour after a 4-hour intravenous infusion of Escherichia coli lipopolysaccharide (LPS) in 12 healthy young men.Results: LPS induced systemic inflammation, reduced the BCAA/AAA ratio, increased the cerebral delivery and unidirectional influx of phenylalanine, and abolished the net cerebral influx of the BCAAs leucine and isoleucine. Furthermore, a net cerebral efflux of glutamine, which was independent of the cerebral net exchange of ammonia, was present after LPS infusion.Conclusions: Systemic inflammation may affect brain function by reducing the BCAA/AAA ratio, thereby changing the cerebral net exchange of LNAAs.
Original language | English |
---|---|
Journal | Critical Care (Online Edition) |
Volume | 14 |
Issue number | 1 |
Pages (from-to) | R16 |
ISSN | 1466-609X |
DOIs | |
Publication status | Published - 11 Feb 2010 |