TY - JOUR
T1 - Centrality dependence of the nuclear modification factor of charged pions, kaons, and protons in Pb-Pb collisions at root s(NN)=2.76 TeV
AU - Adam, J.
AU - Adamova, D.
AU - Aggarwal, M.M.
AU - Rinella, G.A.
AU - Agnello, Maria
AU - Agrawal, N.
AU - Ahammed, Z.
AU - U. Ahn, S.
AU - Aimo, I.
AU - Aiola, S.
AU - Akindinov, A.
AU - Alici, A.
AU - Aikin, Reid
AU - Bearden, Ian
AU - Bøggild, Hans
AU - Christensen, Christian Holm
AU - Gulbrandsen, Kristjan Herlache
AU - Gaardhøje, Jens Jørgen
AU - Dalsgaard, Hans Hjersing
AU - Nielsen, Børge Svane
AU - Hansen, Alexander Colliander
AU - Bilandzic, Ante
AU - Chojnacki, Marek
AU - Zaccolo, Valentina
AU - Zhou, You
AU - Bourjau, Christian Alexander
PY - 2016/3/25
Y1 - 2016/3/25
N2 - Transverse momentum (pT) spectra of pions, kaons, and protons up to pT=20GeV/c have been measured in Pb-Pb collisions at sNN=2.76TeV using the ALICE detector for six different centrality classes covering 0%-80%. The proton-to-pion and the kaon-to-pion ratios both show a distinct peak at pT≈3GeV/c in central Pb-Pb collisions that decreases for more peripheral collisions. For pT>10GeV/c, the nuclear modification factor is found to be the same for all three particle species in each centrality interval within systematic uncertainties of 10%-20%. This suggests there is no direct interplay between the energy loss in the medium and the particle species composition in the hard core of the quenched jet. For pT<10GeV/c, the data provide important constraints for models aimed at describing the transition from soft to hard physics.
AB - Transverse momentum (pT) spectra of pions, kaons, and protons up to pT=20GeV/c have been measured in Pb-Pb collisions at sNN=2.76TeV using the ALICE detector for six different centrality classes covering 0%-80%. The proton-to-pion and the kaon-to-pion ratios both show a distinct peak at pT≈3GeV/c in central Pb-Pb collisions that decreases for more peripheral collisions. For pT>10GeV/c, the nuclear modification factor is found to be the same for all three particle species in each centrality interval within systematic uncertainties of 10%-20%. This suggests there is no direct interplay between the energy loss in the medium and the particle species composition in the hard core of the quenched jet. For pT<10GeV/c, the data provide important constraints for models aimed at describing the transition from soft to hard physics.
U2 - 10.1103/PhysRevC.93.034913
DO - 10.1103/PhysRevC.93.034913
M3 - Journal article
SN - 2469-9985
VL - 93
JO - Physical Review C
JF - Physical Review C
IS - 3
M1 - 034913
ER -