Centrality dependence of particle production in p-Pb collisions at root s(NN)=5.02 TeV

J. Adam, D. Adamova, MM. Aggarwal, G. Aglieri Rinella, A. Agnello, A. Agostinelli, N. Agrawal, Z. Ahammed, Irfan Ahmed, S.U. Ahn, Ian Bearden, Hans Bøggild, Christian Holm Christensen, Kristjan Herlache Gulbrandsen, Jens Jørgen Gaardhøje, Børge Svane Nielsen, Alexander Colliander Hansen, Ante Bilandzic, Marek Chojnacki, Valentina Zaccolo

137 Citations (Scopus)
64 Downloads (Pure)

Abstract

We report measurements of the primary charged-particle pseudorapidity density and transverse momentum distributions in p-Pb collisions at sNN=5.02TeV and investigate their correlation with experimental observables sensitive to the centrality of the collision. Centrality classes are defined by using different event-activity estimators, i.e., charged-particle multiplicities measured in three different pseudorapidity regions as well as the energy measured at beam rapidity (zero degree). The procedures to determine the centrality, quantified by the number of participants (Npart) or the number of nucleon-nucleon binary collisions (Ncoll) are described. We show that, in contrast to Pb-Pb collisions, in p-Pb collisions large multiplicity fluctuations together with the small range of participants available generate a dynamical bias in centrality classes based on particle multiplicity. We propose to use the zero-degree energy, which we expect not to introduce a dynamical bias, as an alternative event-centrality estimator. Based on zero-degree energy-centrality classes, the Npart dependence of particle production is studied. Under the assumption that the multiplicity measured in the Pb-going rapidity region scales with the number of Pb participants, an approximate independence of the multiplicity per participating nucleon measured at mid-rapidity of the number of participating nucleons is observed. Furthermore, at high-pT the p-Pb spectra are found to be consistent with the pp spectra scaled by Ncoll for all centrality classes. Our results represent valuable input for the study of the event-activity dependence of hard probes in p-Pb collisions and, hence, help to establish baselines for the interpretation of the Pb-Pb data.

Original languageEnglish
Article number064905
JournalPhysical Review C (Nuclear Physics)
Volume91
Issue number6
ISSN0556-2813
DOIs
Publication statusPublished - 8 Jun 2015

Fingerprint

Dive into the research topics of 'Centrality dependence of particle production in p-Pb collisions at root s(NN)=5.02 TeV'. Together they form a unique fingerprint.

Cite this