Abstract
The cellular receptor for human urokinase-type plasminogen activator (u-PAR) is shown by several independent criteria to be a true member of a family of integral membrane proteins, anchored to the plasma membrane exclusively by a COOH-terminal glycosyl-phosphatidylinositol moiety. 1) Amino acid analysis of u-PAR after micropurification by affinity chromatography and N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl]glycine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of 2-3 mol of ethanolamine/mol protein. 2) Membrane-bound u-PAR is efficiently released from the surface of human U937 cells by trace amounts of purified bacterial phosphatidylinositol-specific phospholipase C. This soluble form of u-PAR retains the binding specificity toward both u-PA and its amino-terminal fragment holding the receptor-binding domain. 3) Treatment of purified u-PAR with phosphatidylinositol-specific phospholipase C or mild alkali completely alters the hydrophobic properties of the receptor as judged by temperature-induced detergent-phase separation and charge-shift electrophoresis. 4) Biosynthetic labeling of u-PAR was obtained with [3H]ethanolamine and myo-[3H]inositol. 5) Finally, comparison of amino acid compositions derived from cDNA sequence and amino acid analysis shows that a polypeptide of medium hydrophobicity is excised from the COOH terminus of the nascent u-PAR. A similar proteolytic processing has been reported for other proteins that are linked to the plasma membrane by a glycosyl-phosphatidylinositol membrane anchor.
Original language | English |
---|---|
Journal | The Journal of Biological Chemistry |
Volume | 266 |
Issue number | 3 |
Pages (from-to) | 1926-33 |
Number of pages | 8 |
ISSN | 0021-9258 |
Publication status | Published - 25 Jan 1991 |
Externally published | Yes |
Keywords
- Amino Acids
- Ethanolamine
- Ethanolamines
- Glycolipids
- Glycosylphosphatidylinositols
- Humans
- In Vitro Techniques
- Membrane Glycoproteins
- Molecular Weight
- Phosphatidylinositol Diacylglycerol-Lyase
- Phosphatidylinositols
- Phosphoinositide Phospholipase C
- Phosphoric Diester Hydrolases
- Polysaccharides
- Protein Processing, Post-Translational
- Receptors, Cell Surface
- Receptors, Urokinase Plasminogen Activator
- Solubility
- Tumor Cells, Cultured
- Urokinase-Type Plasminogen Activator
- Journal Article
- Research Support, Non-U.S. Gov't