Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise

Adam John Rose, Bente Kiens, Erik Richter

    149 Citations (Scopus)

    Abstract

    Ca2+ signalling is proposed to play an important role in skeletal muscle function during exercise. Here, we examined the expression of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) in human skeletal muscle and show that CaMKII and CaMKK, but not CaMKI or CaMKIV, are expressed. Furthermore, the effect of exercise duration and intensity on skeletal muscle CaMKII activity and phosphorylation of downstream targets was examined. Eight healthy men exercised at ~67% of peak pulmonary O2 uptake (VO2peak) with muscle samples taken at rest and after 1, 10, 30, 60 and 90 min of exercise. Ten other men exercised for three consecutive 10 min bouts at 35%, 60% and 85% VO2peak with muscle samples taken at rest, at the end of each interval and 30 min post-exercise. There was a rapid and transient increase in autonomous CaMKII activity and CaMKII phosphorylation at Thr287 in skeletal muscle during exercise. Furthermore, the phosphorylation of phospholamban (PLN) at Thr17, which was identified as a CaMKII substrate in skeletal muscle, was rapidly (< 1 min) increased by exercise, and remained phosphorylated 5-fold above basal level during 90 min of exercise. The phosphorylation of serum response factor at Ser103, a putative CaMKII substrate, was higher after 30 min of exercise. PLN phosphorylation at Thr17 was higher with increasing exercise intensities. These data indicate that CaMKII is the major multifunctional CaMK in skeletal muscle and its activation occurs rapidly and is sustained during continuous exercise, with the activation being greater during intense exercise.
    Original languageEnglish
    JournalJournal of Physiology
    Volume574
    Issue number3
    Pages (from-to)889-903
    Number of pages5
    ISSN0022-3751
    DOIs
    Publication statusPublished - 2006

    Fingerprint

    Dive into the research topics of 'Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise'. Together they form a unique fingerprint.

    Cite this