CASCADE, a platform for controlled gene amplification for high, tunable and selection-free gene expression in yeast

Tomas Strucko, Line Due Buron, Zofia Dorota Jarczynska, Christina Spuur Nødvig, Louise Mølgaard, Barbara Ann Halkier, Uffe Hasbro Mortensen

10 Citations (Scopus)
66 Downloads (Pure)

Abstract

Over-expression of a gene by increasing its copy number is often desirable in the model yeast Saccharomyces cerevisiae. It may facilitate elucidation of enzyme functions, and in cell factory design it is used to increase production of proteins and metabolites. Current methods are typically exploiting expression from the multicopy 2 μ-derived plasmid or by targeting genes repeatedly into sequences like Ty or rDNA; in both cases, high gene expression levels are often reached. However, with 2 μ-based plasmid expression, the population of cells is very heterogeneous with respect to protein production; and for integration into repeated sequences it is difficult to determine the genetic setup of the resulting strains and to achieve specific gene doses. For both types of systems, the strains often suffer from genetic instability if proper selection pressure is not applied. Here we present a gene amplification system, CASCADE, which enables construction of strains with defined gene copy numbers. One or more genes can be amplified simultaneously and the resulting strains can be stably propagated on selection-free medium. As proof-of-concept, we have successfully used CASCADE to increase heterologous production of two fluorescent proteins, the enzyme β-galactosidase the fungal polyketide 6-methyl salicylic acid and the plant metabolite vanillin glucoside.

Original languageEnglish
Article number41431
JournalScientific Reports
Volume7
Number of pages12
ISSN2045-2322
DOIs
Publication statusPublished - 30 Jan 2017

Keywords

  • Journal Article

Fingerprint

Dive into the research topics of 'CASCADE, a platform for controlled gene amplification for high, tunable and selection-free gene expression in yeast'. Together they form a unique fingerprint.

Cite this