TY - JOUR
T1 - Calcium-sensing receptor activation stimulates parathyroid hormone-related protein secretion in prostate cancer cells
T2 - Role of epidermal growth factor receptor transactivation
AU - Yano, Shozo
AU - Macleod, R. John
AU - Chattopadhyay, Naibedya
AU - Tfelt-Hansen, Jacob
AU - Kifor, Olga
AU - Butters, Robert R.
AU - Brown, Edward M.
PY - 2004/9/1
Y1 - 2004/9/1
N2 - We have previously reported that high extracellular Ca 2+ stimulates parathyroid hormone-related protein (PTHrP) release from human prostate and breast cancer cell lines as well as from H-500 rat leydig cancer cells, an action mediated by the calcium-sensing receptor (CaR). Activating the CaR leads to phosphorylation of mitogen-activated protein kinases (MAPKs) that participate in PTHrP synthesis and secretion. Because the CaR is a G protein-coupled receptor (GPCR), it is likely to transactivate the epidermal growth factor receptor (EGFR) or the platelet-derived growth factor receptor (PDGFR). In this study, we hypothesized that activation of the CaR transactivates the EGFR or PDGFR, and examined whether transactivation affects PTHrP secretion in PC-3 human prostate cancer cells. Using Western analysis, we observed that an increase in extracellular Ca 2+ resulted in delayed activation of extracellular signal-regulated kinase (ERK) in PC-3 cells. Pre-incubation with AG1478 (an EGFR kinase inhibitor) or an EGFR neutralizing antibody inhibited the high Ca 2+-induced phosphorylation of ERK1/2. GM6001, a pan matrix metalloproteinase (MMP) inhibitor, also partially suppressed the ERK activation, but AG1296 (a PDGFR kinase inhibitor) did not. High extracellular Ca 2+ stimulates PTHrP release during a 6-h incubation (1.5- to 2.5- and 3- to 4-fold increases in 3.0 and 7.5 mM Ca 2+, respectively). When cells were preincubated with AG1478, GM6001, or an antihuman heparin-binding EGF (HB-EGF) antibody, PTHrP secretion was significantly inhibited under basal as well as high Ca 2+ conditions, while AG1296 had no effect on PTHrP secretion. Taken together, these findings indicate that activation of the CaR transactivates the EGFR, but not the PDGFR, leading to phosphorylation of ERK1/2 and resultant PTHrP secretion, although CaR-EGFR-ERK might not be the only signaling pathway for PTHrP secretion. This transactivation is most likely mediated by activation of MMP and cleavage of proheparin-binding EGF (proHB-EGF) to HB-EGF.
AB - We have previously reported that high extracellular Ca 2+ stimulates parathyroid hormone-related protein (PTHrP) release from human prostate and breast cancer cell lines as well as from H-500 rat leydig cancer cells, an action mediated by the calcium-sensing receptor (CaR). Activating the CaR leads to phosphorylation of mitogen-activated protein kinases (MAPKs) that participate in PTHrP synthesis and secretion. Because the CaR is a G protein-coupled receptor (GPCR), it is likely to transactivate the epidermal growth factor receptor (EGFR) or the platelet-derived growth factor receptor (PDGFR). In this study, we hypothesized that activation of the CaR transactivates the EGFR or PDGFR, and examined whether transactivation affects PTHrP secretion in PC-3 human prostate cancer cells. Using Western analysis, we observed that an increase in extracellular Ca 2+ resulted in delayed activation of extracellular signal-regulated kinase (ERK) in PC-3 cells. Pre-incubation with AG1478 (an EGFR kinase inhibitor) or an EGFR neutralizing antibody inhibited the high Ca 2+-induced phosphorylation of ERK1/2. GM6001, a pan matrix metalloproteinase (MMP) inhibitor, also partially suppressed the ERK activation, but AG1296 (a PDGFR kinase inhibitor) did not. High extracellular Ca 2+ stimulates PTHrP release during a 6-h incubation (1.5- to 2.5- and 3- to 4-fold increases in 3.0 and 7.5 mM Ca 2+, respectively). When cells were preincubated with AG1478, GM6001, or an antihuman heparin-binding EGF (HB-EGF) antibody, PTHrP secretion was significantly inhibited under basal as well as high Ca 2+ conditions, while AG1296 had no effect on PTHrP secretion. Taken together, these findings indicate that activation of the CaR transactivates the EGFR, but not the PDGFR, leading to phosphorylation of ERK1/2 and resultant PTHrP secretion, although CaR-EGFR-ERK might not be the only signaling pathway for PTHrP secretion. This transactivation is most likely mediated by activation of MMP and cleavage of proheparin-binding EGF (proHB-EGF) to HB-EGF.
KW - Epidermal growth factor receptor (EGFR)
KW - G protein-coupled receptor
KW - Parathyroid hormone-related protein (PTHrP)
KW - Prostate cancer
KW - Transactivation
UR - http://www.scopus.com/inward/record.url?scp=4344565323&partnerID=8YFLogxK
U2 - 10.1016/j.bone.2004.04.014
DO - 10.1016/j.bone.2004.04.014
M3 - Journal article
C2 - 15336602
AN - SCOPUS:4344565323
SN - 8756-3282
VL - 35
SP - 664
EP - 672
JO - Bone
JF - Bone
IS - 3
ER -