TY - JOUR
T1 - Biosynthesis of rhodiocyanosides in Lotus japonicus
T2 - Rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile
AU - Saito, Shigeki
AU - Motawie, Mohammed Saddik
AU - Olsen, Carl Erik
AU - Møller, Birger Lindberg
AU - Bak, Søren
PY - 2012/5
Y1 - 2012/5
N2 - Lotus japonicus contains the two cyanogenic glucosides, linamarin and lotaustralin, and the non cyanogenic hydroxynitriles, rhodiocyanoside A and D, with rhodiocyanoside A as the major rhodiocyanoside. Rhodiocyanosides are structurally related to cyanogenic glucosides but are not cyanogenic. In vitro administration of intermediates of the lotaustralin pathway to microsomes prepared from selected L. japonicus accessions identified 2-methyl-2- butenenitrile as an intermediate in the rhodiocyanoside biosynthetic pathway. In vitro inhibitory studies with carbon monoxide and tetcyclacis indicate that the conversion of (Z)-2-methylbutanal oxime to 2-methyl-2-butenenitrile is catalyzed by cytochrome P450(s). Carbon monoxide inhibited cyanogenic glucosides as well as rhodiocyanosides synthesis, but inhibition of the latter pathway was much stronger. These results demonstrate that the cyanogenic glucoside and rhodiocyanosides pathways share CYP79Ds to obtain (Z)-2-methylbutanaloxime from l-isoleucine, whereas the subsequent conversions are catalyzed by different P450s. The aglycon of rhodiocyanoside A forms the cyclic product 3-methyl-2(5H)-furanone. Furanones are known to possess antimicrobial properties indicating that rhodiocyanoside A may have evolved to serve as a phytoanticipin that following β-glucosidase activation and cyclization of the aglycone formed, give rise to a potent defense compound.
AB - Lotus japonicus contains the two cyanogenic glucosides, linamarin and lotaustralin, and the non cyanogenic hydroxynitriles, rhodiocyanoside A and D, with rhodiocyanoside A as the major rhodiocyanoside. Rhodiocyanosides are structurally related to cyanogenic glucosides but are not cyanogenic. In vitro administration of intermediates of the lotaustralin pathway to microsomes prepared from selected L. japonicus accessions identified 2-methyl-2- butenenitrile as an intermediate in the rhodiocyanoside biosynthetic pathway. In vitro inhibitory studies with carbon monoxide and tetcyclacis indicate that the conversion of (Z)-2-methylbutanal oxime to 2-methyl-2-butenenitrile is catalyzed by cytochrome P450(s). Carbon monoxide inhibited cyanogenic glucosides as well as rhodiocyanosides synthesis, but inhibition of the latter pathway was much stronger. These results demonstrate that the cyanogenic glucoside and rhodiocyanosides pathways share CYP79Ds to obtain (Z)-2-methylbutanaloxime from l-isoleucine, whereas the subsequent conversions are catalyzed by different P450s. The aglycon of rhodiocyanoside A forms the cyclic product 3-methyl-2(5H)-furanone. Furanones are known to possess antimicrobial properties indicating that rhodiocyanoside A may have evolved to serve as a phytoanticipin that following β-glucosidase activation and cyclization of the aglycone formed, give rise to a potent defense compound.
U2 - 10.1016/j.phytochem.2012.01.020
DO - 10.1016/j.phytochem.2012.01.020
M3 - Journal article
SN - 0031-9422
VL - 77
SP - 260
EP - 267
JO - Phytochemistry
JF - Phytochemistry
ER -