TY - JOUR
T1 - Bats and bees are pollinating Parkia biglobosa in the Gambia
AU - Lassen, Kristin Marie
AU - Ræbild, Anders
AU - Hansen, Henrik
AU - Brødsgaard, Camilla J.
AU - Eriksen, Erik Nymann
PY - 2012/7
Y1 - 2012/7
N2 - A pollination experiment was conducted with Parkia biglobosa (Fabaceae) in The Gambia. P. biglobosa is integrated in the farming systems and produces fruit pulp and seeds used in cooking. The species is bat-pollinated, and in areas with few bats the main pollinators are assumed to be honey bees. A higher rate of effective pollination will in many instances increase fruit production, and the aim of this study was to investigate pollination efficiency of different pollinators. Access of flower visiting animals to flowers was controlled by nets with differently sized mesh, using five trees as replicates. The pollinators' identity, efficiency, and relative effect were determined. Bats, honey bees, and stingless bees were able to pollinate the species. Bat-visited capitula produced more pods, but not significantly more than honey bees. Honey bees were more efficient than stingless bees, resulting in significantly less aborted seeds. The treatment which excluded all flower visitors developed no mature pods, indicating that P. biglobosa was not autonomous autogamous, apomictic, or parthenocarpic, while the treatment with confined honey bees showed that geitonogamy is possible. Sugar content of fruit pulp was analysed and a positive correlation between number of seeds per pod and the sugar content was found. Improved pollination success may thus result in sweeter fruits. We conclude it is important to strive against a pollinator-friendly environment in order to attract bats and bees. Furthermore, we suggest beekeeping in the vicinity of P. biglobosa as a way to increase yield.
AB - A pollination experiment was conducted with Parkia biglobosa (Fabaceae) in The Gambia. P. biglobosa is integrated in the farming systems and produces fruit pulp and seeds used in cooking. The species is bat-pollinated, and in areas with few bats the main pollinators are assumed to be honey bees. A higher rate of effective pollination will in many instances increase fruit production, and the aim of this study was to investigate pollination efficiency of different pollinators. Access of flower visiting animals to flowers was controlled by nets with differently sized mesh, using five trees as replicates. The pollinators' identity, efficiency, and relative effect were determined. Bats, honey bees, and stingless bees were able to pollinate the species. Bat-visited capitula produced more pods, but not significantly more than honey bees. Honey bees were more efficient than stingless bees, resulting in significantly less aborted seeds. The treatment which excluded all flower visitors developed no mature pods, indicating that P. biglobosa was not autonomous autogamous, apomictic, or parthenocarpic, while the treatment with confined honey bees showed that geitonogamy is possible. Sugar content of fruit pulp was analysed and a positive correlation between number of seeds per pod and the sugar content was found. Improved pollination success may thus result in sweeter fruits. We conclude it is important to strive against a pollinator-friendly environment in order to attract bats and bees. Furthermore, we suggest beekeeping in the vicinity of P. biglobosa as a way to increase yield.
U2 - 10.1007/s10457-011-9409-0
DO - 10.1007/s10457-011-9409-0
M3 - Journal article
SN - 0167-4366
VL - 85
SP - 465
EP - 475
JO - Agroforestry Systems
JF - Agroforestry Systems
IS - 3
ER -