TY - JOUR
T1 - Atmospheric chemistry of tetrahydrofuran, 2-methyltetrahydrofuran, and 2,5-dimethyltetrahydrofuran
T2 - kinetics of reactions with chlorine atoms, OD radicals, and ozone
AU - Andersen, Christina
AU - Nielsen, Ole John
AU - Østerstrøm, Freja From
AU - Ausmeel, Stina
AU - Nilsson, Elna J. K.
AU - Andersen, Mads Peter Sulbæk
PY - 2016/9/22
Y1 - 2016/9/22
N2 - FTIR smog chamber techniques were used to study the kinetics of the gas-phase reactions of Cl atoms, OD radicals, and O3 with the five-membered ring-structured compounds tetrahydrofuran (C4H8O, THF), 2-methyltetrahydrofuran (CH3C4H7O, 2-MTHF), 2,5-dimethyltetrahydrofuran ((CH3)2C4H5O, 2,5-DMTHF), and furan (C4H4O). The rate coefficients determined using relative rate methods were kTHF+Cl = (1.96 ± 0.24) × 10-10, kTHF+OD = (1.81 ± 0.27) × 10-11, kTHF+O3 = (6.41 ± 2.90) × 10-21, k2-MTHF+Cl = (2.65 ± 0.43) × 10-10, k2-MTHF+OD = (2.41 ± 0.51) × 10-11, k2-MTHF+O3 = (1.87 ± 0.82) × 10-20, k2,5-DMTHF+OD = (4.56 ± 0.68) × 10-11, k2,5-DMTHF+Cl = (2.84 ± 0.34) × 10-10, k2,5-DMTHF+O3 = (4.58 ± 2.18), kfuran+Cl = (2.39 ± 0.27) × 10-10, and kfuran+O3 = (2.60 ± 0.31) × 10-18 molecules cm-3 s-1. Rate coefficients of the reactions with ozone were also determined using the absolute rate method under pseudo-first-order conditions. OD radicals, in place of OH radicals, were produced from CD3ONO to avoid spectral overlap of isopropyl and methyl nitrite with the reactants. The kinetics of OD radical reactions are expected to resemble the kinetics of OH radical reactions, and the rate coefficients of the reactions with OD radicals were used to calculate the atmospheric lifetimes with respect to reactions with OH radicals. The lifetimes of THF, 2-MTHF, and 2,5-DMTHF are approximately 15, 12, and 6 h, respectively.
AB - FTIR smog chamber techniques were used to study the kinetics of the gas-phase reactions of Cl atoms, OD radicals, and O3 with the five-membered ring-structured compounds tetrahydrofuran (C4H8O, THF), 2-methyltetrahydrofuran (CH3C4H7O, 2-MTHF), 2,5-dimethyltetrahydrofuran ((CH3)2C4H5O, 2,5-DMTHF), and furan (C4H4O). The rate coefficients determined using relative rate methods were kTHF+Cl = (1.96 ± 0.24) × 10-10, kTHF+OD = (1.81 ± 0.27) × 10-11, kTHF+O3 = (6.41 ± 2.90) × 10-21, k2-MTHF+Cl = (2.65 ± 0.43) × 10-10, k2-MTHF+OD = (2.41 ± 0.51) × 10-11, k2-MTHF+O3 = (1.87 ± 0.82) × 10-20, k2,5-DMTHF+OD = (4.56 ± 0.68) × 10-11, k2,5-DMTHF+Cl = (2.84 ± 0.34) × 10-10, k2,5-DMTHF+O3 = (4.58 ± 2.18), kfuran+Cl = (2.39 ± 0.27) × 10-10, and kfuran+O3 = (2.60 ± 0.31) × 10-18 molecules cm-3 s-1. Rate coefficients of the reactions with ozone were also determined using the absolute rate method under pseudo-first-order conditions. OD radicals, in place of OH radicals, were produced from CD3ONO to avoid spectral overlap of isopropyl and methyl nitrite with the reactants. The kinetics of OD radical reactions are expected to resemble the kinetics of OH radical reactions, and the rate coefficients of the reactions with OD radicals were used to calculate the atmospheric lifetimes with respect to reactions with OH radicals. The lifetimes of THF, 2-MTHF, and 2,5-DMTHF are approximately 15, 12, and 6 h, respectively.
U2 - 10.1021/acs.jpca.6b06618
DO - 10.1021/acs.jpca.6b06618
M3 - Journal article
C2 - 27556743
SN - 1089-5639
VL - 120
SP - 7320
EP - 7326
JO - Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory
JF - Journal of Physical Chemistry Part A: Molecules, Spectroscopy, Kinetics, Environment and General Theory
IS - 37
ER -