Abstract
Spinocerebellar ataxia type 1 (SCA1) is one of several neurodegenerative disorders caused by an expansion of a polyglutamine tract. It is characterized by ataxia, progressive motor deterioration, and loss of cerebellar Purkinje cells. To understand the pathogenesis of SCA1, we examined the subcellular localization of wild-type human ataxin-1 (the protein encoded by the SCA1 gene) and mutant ataxin-1 in the Purkinje cells of transgenic mice. We found that ataxin-1 localizes to the nuclei of cerebellar Purkinje cells. Normal ataxin-1 localizes to several nuclear structures approximately 0.5 microm across, whereas the expanded ataxin-1 localizes to a single approximately 2-microm structure, before the onset of ataxia. Mutant ataxin-1 localizes to a single nuclear structure in affected neurons of SCA1 patients. Similarly, COS-1 cells transfected with wild-type or mutant ataxin-1 show a similar pattern of nuclear localization; with expanded ataxin-1 occurring in larger structures that are fewer in number than those of normal ataxin-1. Colocalization studies show that mutant ataxin-1 causes a specific redistribution of the nuclear matrix-associated domain containing promyelocytic leukaemia protein. Nuclear matrix preparations demonstrate that ataxin-1 associates with the nuclear matrix in Purkinje and COS cells. We therefore propose that a critical aspect of SCA1 pathogenesis involves the disruption of a nuclear matrix-associated domain.
Original language | English |
---|---|
Journal | Nature |
Volume | 389 |
Issue number | 6654 |
Pages (from-to) | 971-4 |
Number of pages | 3 |
ISSN | 0028-0836 |
DOIs | |
Publication status | Published - 1997 |