Asymptotic theory for the sample covariance matrix of a heavy-tailed multivariate time series

Richard A. Davis, Thomas Valentin Mikosch, Olivier Pfaffel

7 Citations (Scopus)

Abstract

In this paper we give an asymptotic theory for the eigenvalues of the sample covariance matrix of a multivariate time series. The time series constitutes a linear process across time and between components. The input noise of the linear process has regularly varying tails with index α∈(0,4) in particular, the time series has infinite fourth moment. We derive the limiting behavior for the largest eigenvalues of the sample covariance matrix and show point process convergence of the normalized eigenvalues. The limiting process has an explicit form involving points of a Poisson process and eigenvalues of a non-negative definite matrix. Based on this convergence we derive limit theory for a host of other continuous functionals of the eigenvalues, including the joint convergence of the largest eigenvalues, the joint convergence of the largest eigenvalue and the trace of the sample covariance matrix, and the ratio of the largest eigenvalue to their sum.
Original languageEnglish
JournalStochastic Processes and Their Applications
Volume126
Issue number3
Pages (from-to)767–799
ISSN0304-4149
DOIs
Publication statusPublished - Mar 2016

Fingerprint

Dive into the research topics of 'Asymptotic theory for the sample covariance matrix of a heavy-tailed multivariate time series'. Together they form a unique fingerprint.

Cite this