Assessment of the proliferation status of glioblastoma cell and tumour tissue after nanoplatinum treatment

Marta Kutwin, Ewa Sawosz, Slawomir Jaworski, Mateusz Wierzbicki, Barbara Strojny, Marta Grodzik, André Chwalibog

    12 Citations (Scopus)
    56 Downloads (Pure)

    Abstract

    Glioblastoma is one of the most frequent primary brain tumours of the central nervous system, with a poor survival time. With inefficient chemotherapy, it is urgent to develop new strategies for tumour therapy. The present approach is based on the inhibition of cell proliferation using platinum nanoparticles (NP-Pt). The aim of the study was to evaluate and compare the antiproliferative properties of NP-Pt and cisplatin against U87 and U118 glioma cell lines and U87 tumour tissue. NP-Pt and cisplatin were incubated with U87 and U118 glioma cells or administered directly into glioma tumour tissue. Cell morphology, the level of DNA synthesis, the migration of cells, protein expression levels of proliferating cell nuclear antigen (PCNA) and the level of DNA oxidation in glioma tumours were investigated. The results showed that NP-Pt treatment of U87 and U118 glioma cells decreased the level of DNA synthesis and the migration of cancer cells but also downregulated the level of PCNA protein expression in tumour tissue. Furthermore, NP-Pt caused oxidative DNA damage in tumour tissue to a higher degree than cisplatin. Consequently, NP-Pt can be considered as an effective inhibitor of glioblastoma tumour cell proliferation. However, the mechanism of action and potential side effects need to be elucidated further
    Original languageEnglish
    Article numbere0178277
    JournalPLOS ONE
    Volume12
    Issue number5
    Number of pages15
    ISSN1932-6203
    DOIs
    Publication statusPublished - May 2017

    Fingerprint

    Dive into the research topics of 'Assessment of the proliferation status of glioblastoma cell and tumour tissue after nanoplatinum treatment'. Together they form a unique fingerprint.

    Cite this