Abstract
Various parameters based on QTc and T-wave morphology have been shown to be useful discriminators for drug induced I(Kr)-blocking. Using different classification methods this study compares the potential of these two features for identifying abnormal repolarization on the ECG. A group of healthy volunteers and LQT2 carriers were used to train classification algorithms using measures of T-wave morphology and QTc. The ability to correctly classify a third group of test subjects before and after receiving d,l-sotalol was evaluated using classification rules derived from training. As a single electrocardiographic feature, T-wave morphology separates normal from abnormal repolarization better than QTc. It is further indicated that nonlinear boundaries can provide stronger classifiers than a linear boundaries. Whether this is true in general with other ECG markers and other data sets is uncertain because the approach has not been tested in this setting.
Original language | English |
---|---|
Journal | Computers in Biology and Medicine |
Volume | 42 |
Issue number | 4 |
Pages (from-to) | 485-91 |
Number of pages | 7 |
ISSN | 0010-4825 |
DOIs | |
Publication status | Published - Apr 2012 |
Keywords
- Adult
- Algorithms
- Cluster Analysis
- Discriminant Analysis
- Electrocardiography
- Female
- Fuzzy Logic
- Humans
- Long QT Syndrome
- Male
- Multivariate Analysis
- ROC Curve
- Signal Processing, Computer-Assisted