TY - JOUR
T1 - Aqueous humor enhances the proliferation of rat retinal precursor cells in culture, and this effect is partially reproduced by ascorbic acid.
AU - Yang, Jing
AU - Klassen, Henry
AU - Pries, Mette
AU - Wang, Wei
AU - Nissen, Mogens H
N1 - Keywords: Animals; Aqueous Humor; Ascorbic Acid; Biological Markers; Cell Proliferation; Cells, Cultured; Chromatography, Gel; Culture Media, Serum-Free; Epidermal Growth Factor; Female; Freezing; Molecular Weight; Rats; Rats, Sprague-Dawley; Retina; Spectrophotometry, Ultraviolet; Stem Cells; Swine
PY - 2006
Y1 - 2006
N2 - Aqueous humor has been shown to influence the proliferation of various ocular cell types, but the effect on immature retinal cells is not known. Here, the effect of pig aqueous humor on the proliferation of rat retinal precursor cells (RPCs) was investigated. RPCs were prepared from embryonic day 19 Sprague-Dawley rats and cultured in the presence or absence of aqueous humor from healthy pigs along with a medium consisting of Dulbecco's modified Eagle's medium:Ham's F-12 medium, N2 supplement, and epidermal growth factor. Proliferation was quantified by [(3)H]thymidine incorporation under different treatment conditions, and any associated morphological changes were noted. Potential active components of porcine aqueous humor were partially characterized by gel filtration chromatography, and the effect on RPC proliferation was determined. Results showed that adding 20% aqueous humor increased [(3)H]thymidine incorporation by as much as 317%, as compared with controls. Aqueous supplementation also increased both the number and size of RPC spherical aggregates ("spheres") over the first 4 days, consistent with increased proliferative activity. Using gel filtration and the in vitro proliferation assay, the growth-promoting activity of aqueous humor was localized to two different molecular mass ranges, namely, around 30 kDa and less than 1 kDa. Ascorbic acid was present in the lower molecular mass fraction, and use of this molecule reproduced some, but not all, of the proliferative activity present in aqueous humor. These results highlight the potential role of soluble factors present in the cellular microenvironment with respect to modulation of endogenous progenitor cell activity.
AB - Aqueous humor has been shown to influence the proliferation of various ocular cell types, but the effect on immature retinal cells is not known. Here, the effect of pig aqueous humor on the proliferation of rat retinal precursor cells (RPCs) was investigated. RPCs were prepared from embryonic day 19 Sprague-Dawley rats and cultured in the presence or absence of aqueous humor from healthy pigs along with a medium consisting of Dulbecco's modified Eagle's medium:Ham's F-12 medium, N2 supplement, and epidermal growth factor. Proliferation was quantified by [(3)H]thymidine incorporation under different treatment conditions, and any associated morphological changes were noted. Potential active components of porcine aqueous humor were partially characterized by gel filtration chromatography, and the effect on RPC proliferation was determined. Results showed that adding 20% aqueous humor increased [(3)H]thymidine incorporation by as much as 317%, as compared with controls. Aqueous supplementation also increased both the number and size of RPC spherical aggregates ("spheres") over the first 4 days, consistent with increased proliferative activity. Using gel filtration and the in vitro proliferation assay, the growth-promoting activity of aqueous humor was localized to two different molecular mass ranges, namely, around 30 kDa and less than 1 kDa. Ascorbic acid was present in the lower molecular mass fraction, and use of this molecule reproduced some, but not all, of the proliferative activity present in aqueous humor. These results highlight the potential role of soluble factors present in the cellular microenvironment with respect to modulation of endogenous progenitor cell activity.
U2 - 10.1634/stemcells.2006-0103
DO - 10.1634/stemcells.2006-0103
M3 - Journal article
C2 - 16902197
SN - 1066-5099
VL - 24
SP - 2766
EP - 2775
JO - Stem Cells
JF - Stem Cells
IS - 12
ER -