TY - JOUR
T1 - Antiferromagnetic noise correlations in optical lattices
AU - Bruun, Niels Bohr International Academy, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark, Georg Morten
AU - Syljuåsen, F. T.
AU - Pedersen, K. G. L.
AU - Andersen, Brian Møller
AU - Demler, E.
AU - Sørensen, Anders Søndberg
PY - 2009/9/23
Y1 - 2009/9/23
N2 - We analyze how noise correlations probed by time-of-flight experiments reveal antiferromagnetic (AF) correlations of fermionic atoms in two-dimensional and three-dimensional optical lattices. Combining analytical and quantum Monte Carlo calculations using experimentally realistic parameters, we show that AF correlations can be detected for temperatures above and below the critical temperature for AF ordering. It is demonstrated that spin-resolved noise correlations yield important information about the spin ordering. Finally, we show how to extract the spin correlation length and the related critical exponent of the AF transition from the noise
Udgivelsesdato: September 18
AB - We analyze how noise correlations probed by time-of-flight experiments reveal antiferromagnetic (AF) correlations of fermionic atoms in two-dimensional and three-dimensional optical lattices. Combining analytical and quantum Monte Carlo calculations using experimentally realistic parameters, we show that AF correlations can be detected for temperatures above and below the critical temperature for AF ordering. It is demonstrated that spin-resolved noise correlations yield important information about the spin ordering. Finally, we show how to extract the spin correlation length and the related critical exponent of the AF transition from the noise
Udgivelsesdato: September 18
U2 - 10.1103/PhysRevA.80.033622
DO - 10.1103/PhysRevA.80.033622
M3 - Journal article
SN - 2469-9926
VL - 80
SP - 033622
JO - Physical Review A (Atomic, Molecular and Optical Physics)
JF - Physical Review A (Atomic, Molecular and Optical Physics)
IS - 3
ER -