TY - JOUR
T1 - Analysis of the expression of putatively imprinted genes in bovine peri-implantation embryos
AU - Tveden-Nyborg, Pernille Yde
AU - Alexopoulos, N.I.
AU - Cooney, M.A.
AU - French, A.J.
AU - Tecirlioglu, R.T.
AU - Holland, M.K.
AU - Thomsen, Preben Dybdahl
AU - D'Cruz, N.T.
PY - 2008
Y1 - 2008
N2 - The application of assisted reproductive technologies (ART) has been shown to induce changes in the methylation of the embryonic genome, leading to aberrant gene expression, including that of imprinted genes. Aberrant methylation and gene expression has been linked to the large offspring syndrome (LOS) in bovine embryos resulting in increased embryonic morbidity and mortality. In the bovine, limited numbers of imprinted genes have been studied and studies have primarily been restricted to pre-implantation stages. This study reports original data on the expression pattern of 8 putatively imprinted genes (Ata3, Dlk1, Gnas, Grb10, Magel2, Mest-1, Ndn and Sgce) in bovine peri-implantation embryos. Two embryonic developmental stages were examined, Day 14 and Day 21. The gene expression pattern of single embryos was recorded for in vivo, in vitro produced (IVP) and parthenogenetic embryos. The IVP embryos allow us to estimate the effect of in vitro procedures and the analysis of parthenogenetic embryos provides provisional information on maternal genomic imprinting. Among the 8 genes investigated, only Mest-1 showed differential expression in Day 21 parthenogenetic embryos compared to in vivo and IVP counterparts, indicating maternal imprinting of this gene. In addition, our expression analysis of single embryos revealed a more heterogeneous gene expression in IVP than in in vivo developed embryos, adding further to the hypothesis of transcriptional dysregulation induced by in vitro procedures, either by in vitro maturation, fertilization or culture. In conclusion, effects of genomic imprinting and of in vitro procedures for embryo production may influence the success of bovine embryo implantation.
AB - The application of assisted reproductive technologies (ART) has been shown to induce changes in the methylation of the embryonic genome, leading to aberrant gene expression, including that of imprinted genes. Aberrant methylation and gene expression has been linked to the large offspring syndrome (LOS) in bovine embryos resulting in increased embryonic morbidity and mortality. In the bovine, limited numbers of imprinted genes have been studied and studies have primarily been restricted to pre-implantation stages. This study reports original data on the expression pattern of 8 putatively imprinted genes (Ata3, Dlk1, Gnas, Grb10, Magel2, Mest-1, Ndn and Sgce) in bovine peri-implantation embryos. Two embryonic developmental stages were examined, Day 14 and Day 21. The gene expression pattern of single embryos was recorded for in vivo, in vitro produced (IVP) and parthenogenetic embryos. The IVP embryos allow us to estimate the effect of in vitro procedures and the analysis of parthenogenetic embryos provides provisional information on maternal genomic imprinting. Among the 8 genes investigated, only Mest-1 showed differential expression in Day 21 parthenogenetic embryos compared to in vivo and IVP counterparts, indicating maternal imprinting of this gene. In addition, our expression analysis of single embryos revealed a more heterogeneous gene expression in IVP than in in vivo developed embryos, adding further to the hypothesis of transcriptional dysregulation induced by in vitro procedures, either by in vitro maturation, fertilization or culture. In conclusion, effects of genomic imprinting and of in vitro procedures for embryo production may influence the success of bovine embryo implantation.
U2 - 10.1016/j.theriogenology.2008.06.033
DO - 10.1016/j.theriogenology.2008.06.033
M3 - Journal article
C2 - 18675451
SN - 0093-691X
VL - 70
SP - 1119
EP - 1128
JO - Theriogenology
JF - Theriogenology
IS - 7
ER -