TY - JOUR
T1 - An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype typhimurium DT104
AU - Molbak, K.
AU - Baggesen, Dorte Lau
AU - Aarestrup, Frank Møller
AU - Ebbesen, J.M.
AU - Engberg, J.
AU - Frydendahl, K.
AU - Gerner-Smidt, P.
AU - Petersen, A.M.
AU - Wegener, Henrik Caspar
PY - 1999
Y1 - 1999
N2 - Background Food-borne salmonella infections have become a major problem in industrialized countries. The strain of Salmonella enterica serotype typhimurium known as definitive phage type 104 (DT104) is usually resistant to five drugs: ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline. An increasing proportion of DT104 isolates also have reduced susceptibility to fluoroquinolones. Methods The Danish salmonella surveillance program determines the phage types of all typhimurium strains from the food chain, and in the case of suspected outbreaks, five-drug-resistant strains are characterized by molecular methods. All patients infected with five-drug-resistant typhimurium are interviewed to obtain clinical and epidemiologic data. In 1998, an outbreak of salmonella occurred, in which the strain of typhimurium DT104 was new to Denmark. We investigated this outbreak and report our findings here. Results Until 1997, DT104 infections made up less than 1 percent of all human salmonella infections. The strain isolated from patients in the first community outbreak of DT104 in Denmark, in 1998, was resistant to nalidixic acid and had reduced susceptibility to fluoroquinolones. The outbreak included 25 culture-confirmed cases. Eleven patients were hospitalized, and two died. The molecular epidemiology and data from patients indicated that the primary source was a Danish swine herd. Furthermore, the investigation suggested reduced clinical effectiveness of treatment with fluoroquinolones. Conclusions Our investigation of an outbreak of DT104 documented the spread of quinolone-resistant bacteria from food animals to humans; this spread was associated with infections that were difficult to treat. Because of the increase in quinolone resistance in salmonella, the use of fluoroquinolones in food animals should be restricted. (N Engl J Med 1999;341:1420-5.) (C)1999, Massachusetts Medical Society.
AB - Background Food-borne salmonella infections have become a major problem in industrialized countries. The strain of Salmonella enterica serotype typhimurium known as definitive phage type 104 (DT104) is usually resistant to five drugs: ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline. An increasing proportion of DT104 isolates also have reduced susceptibility to fluoroquinolones. Methods The Danish salmonella surveillance program determines the phage types of all typhimurium strains from the food chain, and in the case of suspected outbreaks, five-drug-resistant strains are characterized by molecular methods. All patients infected with five-drug-resistant typhimurium are interviewed to obtain clinical and epidemiologic data. In 1998, an outbreak of salmonella occurred, in which the strain of typhimurium DT104 was new to Denmark. We investigated this outbreak and report our findings here. Results Until 1997, DT104 infections made up less than 1 percent of all human salmonella infections. The strain isolated from patients in the first community outbreak of DT104 in Denmark, in 1998, was resistant to nalidixic acid and had reduced susceptibility to fluoroquinolones. The outbreak included 25 culture-confirmed cases. Eleven patients were hospitalized, and two died. The molecular epidemiology and data from patients indicated that the primary source was a Danish swine herd. Furthermore, the investigation suggested reduced clinical effectiveness of treatment with fluoroquinolones. Conclusions Our investigation of an outbreak of DT104 documented the spread of quinolone-resistant bacteria from food animals to humans; this spread was associated with infections that were difficult to treat. Because of the increase in quinolone resistance in salmonella, the use of fluoroquinolones in food animals should be restricted. (N Engl J Med 1999;341:1420-5.) (C)1999, Massachusetts Medical Society.
U2 - 10.1056/NEJM199911043411902
DO - 10.1056/NEJM199911043411902
M3 - Journal article
SN - 0028-4793
VL - 341
SP - 1420
EP - 1425
JO - New England Journal of Medicine
JF - New England Journal of Medicine
IS - 19
ER -