TY - JOUR
T1 - An isotopic analysis of ionising radiation as a source of sulphuric acid
AU - Enghoff, Martin Andreas Bødker
AU - Bork, Nicolai Christian
AU - Hattori, S.
AU - Meusinger, Carl
AU - Nakagawa, M.
AU - Pedersen, Jens Olaf Pepke
AU - Danielache, S.
AU - Ueno, Y.
AU - Johnson, Matthew Stanley
AU - Yoshida, N.
AU - Svensmark, Henrik
PY - 2012
Y1 - 2012
N2 - Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism has remained undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a missing source. In this study the production of sulphuric acid from SO 2 through a number of different pathways is investigated. The production methods are standard gas phase oxidation by OH radicals produced by ozone photolysis with UV light, liquid phase oxidation by ozone, and gas phase oxidation initiated by gamma rays. The distributions of stable sulphur isotopes in the products and substrate were measured using isotope ratio mass spectrometry. All methods produced sulphate enriched in 34S and we find an enrichment factor (δ34S) of 8.7 ± 0.4‰ (1 standard deviation) for the UV-initiated OH reaction. Only UV light (Hg emission at 253.65 nm) produced a clear non-mass-dependent excess of 33S. The pattern of isotopic enrichment produced by gamma rays is similar, but not equal, to that produced by aqueous oxidation of SO 2 by ozone. This, combined with the relative yields of the experiments, suggests a mechanism in which ionising radiation may lead to hydrated ion clusters that serve as nanoreactors for S(IV) to S(VI) conversion.
AB - Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism has remained undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a missing source. In this study the production of sulphuric acid from SO 2 through a number of different pathways is investigated. The production methods are standard gas phase oxidation by OH radicals produced by ozone photolysis with UV light, liquid phase oxidation by ozone, and gas phase oxidation initiated by gamma rays. The distributions of stable sulphur isotopes in the products and substrate were measured using isotope ratio mass spectrometry. All methods produced sulphate enriched in 34S and we find an enrichment factor (δ34S) of 8.7 ± 0.4‰ (1 standard deviation) for the UV-initiated OH reaction. Only UV light (Hg emission at 253.65 nm) produced a clear non-mass-dependent excess of 33S. The pattern of isotopic enrichment produced by gamma rays is similar, but not equal, to that produced by aqueous oxidation of SO 2 by ozone. This, combined with the relative yields of the experiments, suggests a mechanism in which ionising radiation may lead to hydrated ion clusters that serve as nanoreactors for S(IV) to S(VI) conversion.
U2 - 10.5194/acp-12-5319-2012
DO - 10.5194/acp-12-5319-2012
M3 - Journal article
SN - 1680-7367
VL - 12
SP - 5319
EP - 5327
JO - Atmospheric Chemistry and Physics Discussions
JF - Atmospheric Chemistry and Physics Discussions
IS - 12
ER -