TY - JOUR
T1 - An inter-comparison of regional climate models for Europe
T2 - Model performance in present-day climate
AU - Jacob, Daniela
AU - Bärring, Lars
AU - Christensen, Ole Bøssing
AU - Christensen, Jens Hesselbjerg
AU - De Castro, Manuel
AU - Déqué, Michel
AU - Giorgi, Filippo
AU - Hagemann, Stefan
AU - Hirschi, Martin
AU - Jones, Richard
AU - Kjellström, Erik
AU - Lenderink, Geert
AU - Rockel, Burkhardt
AU - Sánchez, Enrique
AU - Schär, Christoph
AU - Seneviratne, Sonia I.
AU - Somot, Samuel
AU - Van Ulden, Aad
AU - Van Den Hurk, Bart
PY - 2007
Y1 - 2007
N2 - The analysis of possible regional climate changes over Europe as simulated by 10 regional climate models within the context of PRUDENCE requires a careful investigation of possible systematic biases in the models. The purpose of this paper is to identify how the main model systematic biases vary across the different models. Two fundamental aspects of model validation are addressed here: the ability to simulate (1) the long-term (30 or 40 years) mean climate and (2) the inter-annual variability. The analysis concentrates on near-surface air temperature and precipitation over land and focuses mainly on winter and summer. In general, there is a warm bias with respect to the CRU data set in these extreme seasons and a tendency to cold biases in the transition seasons. In winter the typical spread (standard deviation) between the models is 1 K. During summer there is generally a better agreement between observed and simulated values of inter-annual variability although there is a relatively clear signal that the modeled temperature variability is larger than suggested by observations, while precipitation variability is closer to observations. The areas with warm (cold) bias in winter generally exhibit wet (dry) biases, whereas the relationship is the reverse during summer (though much less clear, coupling warm (cold) biases with dry (wet) ones). When comparing the RCMs with their driving GCM, they generally reproduce the large-scale circulation of the GCM though in some cases there are substantial differences between regional biases in surface temperature and precipitation.
AB - The analysis of possible regional climate changes over Europe as simulated by 10 regional climate models within the context of PRUDENCE requires a careful investigation of possible systematic biases in the models. The purpose of this paper is to identify how the main model systematic biases vary across the different models. Two fundamental aspects of model validation are addressed here: the ability to simulate (1) the long-term (30 or 40 years) mean climate and (2) the inter-annual variability. The analysis concentrates on near-surface air temperature and precipitation over land and focuses mainly on winter and summer. In general, there is a warm bias with respect to the CRU data set in these extreme seasons and a tendency to cold biases in the transition seasons. In winter the typical spread (standard deviation) between the models is 1 K. During summer there is generally a better agreement between observed and simulated values of inter-annual variability although there is a relatively clear signal that the modeled temperature variability is larger than suggested by observations, while precipitation variability is closer to observations. The areas with warm (cold) bias in winter generally exhibit wet (dry) biases, whereas the relationship is the reverse during summer (though much less clear, coupling warm (cold) biases with dry (wet) ones). When comparing the RCMs with their driving GCM, they generally reproduce the large-scale circulation of the GCM though in some cases there are substantial differences between regional biases in surface temperature and precipitation.
U2 - 10.1007/s10584-006-9213-4
DO - 10.1007/s10584-006-9213-4
M3 - Journal article
AN - SCOPUS:34248216067
SN - 0165-0009
VL - 81
SP - 31
EP - 52
JO - Climatic Change
JF - Climatic Change
IS - Suppl. 1
ER -