Abstract
CRISPR-Cas systems provide a small RNA-based mechanism to defend against invasive genetic elements in archaea and bacteria. To investigate the in vivo mechanism of RNA interference by two type III-B systems (Cmr-α and Cmr-β) in Sulfolobus islandicus, a genetic assay was developed using plasmids carrying an artificial mini-CRISPR (AC) locus with a single spacer. After pAC plasmids were introduced into different strains, Northern analyses confirmed that mature crRNAs were produced from the plasmid-borne CRISPR loci, which then guided gene silencing to target gene expression. Spacer mutagenesis identified a trinucleotide sequence in the 3'-region of crRNA that was crucial for RNA interference. Studying mutants lacking Cmr-α or Cmr-β system showed that each Cmr complex exhibited RNA interference. Strikingly, these analyses further revealed that the two Cmr systems displayed distinctive interference features. Whereas Cmr-β complexes targeted transcripts and could be recycled in RNA cleavage, Cmr-α complexes probably targeted nascent RNA transcripts and remained associated with the substrate. Moreover, Cmr-β exhibited much stronger RNA cleavage activity than Cmr-α. Since we previously showed that S. islandicus Cmr-α mediated transcription-dependent DNA interference, the Cmr-α constitutes the first CRISPR system exhibiting dual targeting of RNA and DNA.
Original language | English |
---|---|
Journal | Nucleic Acids Research |
Volume | 43 |
Issue number | 1 |
Pages (from-to) | 406-417 |
Number of pages | 12 |
ISSN | 0305-1048 |
DOIs | |
Publication status | Published - 1 Sept 2015 |