TY - JOUR
T1 - AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle
AU - Jensen, Thomas Elbenhardt
AU - Schjerling, Peter
AU - Viollet, Benoit
AU - Wojtaszewski, Jørgen
AU - Richter, Erik
N1 - CURIS 2008 5200 042
PY - 2008
Y1 - 2008
N2 - BACKGROUND: AMPK is a promising pharmacological target in relation to metabolic disorders partly due to its non-insulin dependent glucose uptake promoting role in skeletal muscle. Of the 2 catalytic alpha-AMPK isoforms, alpha(2) AMPK is clearly required for stimulation of glucose transport into muscle by certain stimuli. In contrast, no clear function has yet been determined for alpha(1) AMPK in skeletal muscle, possibly due to alpha-AMPK isoform signaling redundancy. By applying low-intensity twitch-contraction and H(2)O(2) stimulation to activate alpha(1) AMPK, but not alpha(2) AMPK, in wildtype and alpha-AMPK transgenic mouse muscles, this study aimed to define conditions where alpha(1) AMPK is required to increase muscle glucose uptake. METHODOLOGY/PRINCIPAL FINDINGS: Following stimulation with H(2)O(2) (3 mM, 20 min) or twitch-contraction (0.1 ms pulse, 2 Hz, 2 min), signaling and 2-deoxyglucose uptake were measured in incubated soleus muscles from wildtype and muscle-specific kinase-dead AMPK (KD), alpha(1) AMPK knockout or alpha(2) AMPK knockout mice. H(2)O(2) increased the activity of both alpha(1) and alpha(2) AMPK in addition to Akt phosphorylation, and H(2)O(2)-stimulated glucose uptake was not reduced in any of the AMPK transgenic mouse models compared with wild type. In contrast, twitch-contraction increased the activity of alpha(1) AMPK, but not alpha(2) AMPK activity nor Akt or AS160 phosphorylation. Glucose uptake was markedly lower in alpha(1) AMPK knockout and KD AMPK muscles, but not in alpha(2) AMPK knockout muscles, following twitch stimulation. CONCLUSIONS/SIGNIFICANCE: These results provide strong genetic evidence that alpha(1) AMPK, but not alpha(2) AMPK, Akt or AS160, is necessary for regulation of twitch-contraction stimulated glucose uptake. To our knowledge, this is the first report to show a major and essential role of alpha(1) AMPK in regulating a physiological endpoint in skeletal muscle. In contrast, AMPK is not essential for H(2)O(2)-stimulated muscle glucose uptake, as proposed by recent studies.
AB - BACKGROUND: AMPK is a promising pharmacological target in relation to metabolic disorders partly due to its non-insulin dependent glucose uptake promoting role in skeletal muscle. Of the 2 catalytic alpha-AMPK isoforms, alpha(2) AMPK is clearly required for stimulation of glucose transport into muscle by certain stimuli. In contrast, no clear function has yet been determined for alpha(1) AMPK in skeletal muscle, possibly due to alpha-AMPK isoform signaling redundancy. By applying low-intensity twitch-contraction and H(2)O(2) stimulation to activate alpha(1) AMPK, but not alpha(2) AMPK, in wildtype and alpha-AMPK transgenic mouse muscles, this study aimed to define conditions where alpha(1) AMPK is required to increase muscle glucose uptake. METHODOLOGY/PRINCIPAL FINDINGS: Following stimulation with H(2)O(2) (3 mM, 20 min) or twitch-contraction (0.1 ms pulse, 2 Hz, 2 min), signaling and 2-deoxyglucose uptake were measured in incubated soleus muscles from wildtype and muscle-specific kinase-dead AMPK (KD), alpha(1) AMPK knockout or alpha(2) AMPK knockout mice. H(2)O(2) increased the activity of both alpha(1) and alpha(2) AMPK in addition to Akt phosphorylation, and H(2)O(2)-stimulated glucose uptake was not reduced in any of the AMPK transgenic mouse models compared with wild type. In contrast, twitch-contraction increased the activity of alpha(1) AMPK, but not alpha(2) AMPK activity nor Akt or AS160 phosphorylation. Glucose uptake was markedly lower in alpha(1) AMPK knockout and KD AMPK muscles, but not in alpha(2) AMPK knockout muscles, following twitch stimulation. CONCLUSIONS/SIGNIFICANCE: These results provide strong genetic evidence that alpha(1) AMPK, but not alpha(2) AMPK, Akt or AS160, is necessary for regulation of twitch-contraction stimulated glucose uptake. To our knowledge, this is the first report to show a major and essential role of alpha(1) AMPK in regulating a physiological endpoint in skeletal muscle. In contrast, AMPK is not essential for H(2)O(2)-stimulated muscle glucose uptake, as proposed by recent studies.
U2 - 10.1371/journal.pone.0002102
DO - 10.1371/journal.pone.0002102
M3 - Journal article
C2 - 18461163
SN - 1932-6203
VL - 3
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 5
M1 - e2102
ER -