Advanced technologies for plant cell wall evolution and diversity

Jonatan Ulrik Fangel

Abstract

Plant cell walls consist of polysaccharides, glycoproteins and phenolic polymers interlinked together in a highly complex network. The detailed analysis of cell walls is challenging because of their inherent complexity and heterogeneity. Also, complex carbohydrates, unlike proteins and nucleotides cannot really be synthesised or sequenced. The work described in this thesis is focused to a large extent on the development of a microarray-based high-throughput method for cell wall analysis known as Comprehensive microarray polymer profiling or CoMPP. The procedure uses highly specific molecular probes (monoclonal antibodies mAbs and carbohydrate binding modules, CBMs) to rapidly profile polysaccharides across a sample set. During my PhD I have further developed the CoMPP technique and used it for cell wall analysis within the context of a variety of applied and fundamental projects. The data produced has provided new insight into cell wall evolution and biosynthesis and has contributed to the commercial development of cell wall materials. A major focus of the work has been the wide scale sampling of cell wall diversity across the plant kingdom, from unicellular algae to highly evolved angiosperms. This analysis has enabled cell wall diversity to be placed in a phylogenetic context, and, when integrated with transcriptomic and genomic analysis has contributed to our understanding of important aspects of plant evolution.
Original languageEnglish
PublisherDepartment of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen
Publication statusPublished - 2013

Cite this