Acyl-homoserine lactone-dependent eavesdropping promotes competition in a laboratory co-culture mode

J.R. Chandler, J.E. Mittler, E.P. Greenberg, Silja Heilmann

60 Citations (Scopus)

Abstract

Many Proteobacteria use acyl-homoserine lactone (AHL)-mediated quorum sensing to activate the production of antibiotics at high cell density. Extracellular factors like antibiotics can be considered public goods shared by individuals within a group. Quorum-sensing control of antibiotic production may be important for protecting a niche or competing for limited resources in mixed bacterial communities. To begin to investigate the role of quorum sensing in interspecies competition, we developed a dual-species co-culture model using the soil saprophytes Burkholderia thailandensis (Bt) and Chromobacterium violaceum (Cv). These bacteria require quorum sensing to activate the production of antimicrobial factors that inhibit growth of the other species. We demonstrate that quorum-sensing-dependent antimicrobials can provide a competitive advantage to either Bt or Cv by inhibiting growth of the other species in co-culture. Although the quorum-sensing signals differ for each species, we show that the promiscuous signal receptor encoded by Cv can sense signals produced by Bt, and that this ability to eavesdrop on Bt can provide Cv an advantage in certain situations. We use an in silico approach to investigate the effect of eavesdropping in competition, and show conditions where early activation of antibiotic production resulting from eavesdropping can promote competitiveness. Our work supports the idea that quorum sensing is important for interspecies competition and that promiscuous signal receptors allow eavesdropping on competitors in mixed microbial habitats.

Original languageEnglish
JournalISME Journal
Volume6
Issue number12
Pages (from-to)2219-2228
Number of pages9
ISSN1751-7362
DOIs
Publication statusPublished - 1 Dec 2012

Fingerprint

Dive into the research topics of 'Acyl-homoserine lactone-dependent eavesdropping promotes competition in a laboratory co-culture mode'. Together they form a unique fingerprint.

Cite this