Acute systemic insulin intolerance does not alter the response of the Akt/GSK-3 pathway to environmental hypoxia in human skeletal muscle

Gommaar D'Hulst, Lykke Sylow, Peter Hespel, Louise Deldicque

4 Citations (Scopus)

Abstract

Methods: Fifteen subjects were exposed for 4 h to normoxia (NOR) or to normobaric hypoxia (HYP, FiO2 = 0.11) in a randomized order 40 min after consumption of a high glycemic meal. A muscle biopsy from m. vastus lateralis and a blood sample were taken before (T0), after 1 h (T60) and 4 h (T240) in NOR or HYP and blood glucose levels were measured before exposure and every 30 min.

Purpose: To investigate how acute environmental hypoxia regulates blood glucose and downstream intramuscular insulin signaling after a meal in healthy humans.

Results: In HYP, blood glucose was reduced 100 min (110.1 ± 5.4 in NOR vs 89.5 ± 4.7 mg dl−1 in HYP) and 130 min (98.7 ± 3.8 in NOR vs 85.6 ± 4.9 mg dl−1 in HYP) after completion of a meal, which resulted in an 83 % lower AUC in HYP compared to NOR (p = 0.006). This coincided with 40 % lower GLUT4 protein in the cytosolic fraction (p = 0.013) and a tendency to increase in the crude membrane fraction (p = 0.070) in HYP compared to NOR. At T240, blood glucose concentration was similar between HYP and NOR, whereas plasma insulin as well as phosphorylation of muscle Akt and GSK-3 was ~2-fold higher in HYP compared to NOR (p < 0.05). In contrast, Rac1 protein was less abundant in the membrane fraction in HYP compared to NOR (p = 0.003), reflecting lower activation.

Conclusion: Acute environmental hypoxia initially reduced blood glucose response to a meal, possibly via an increase in GLUT4 abundance at the sarcolemmal membrane. Later on, whole body insulin intolerance developed independently of defects in conventional insulin signaling in skeletal muscle.

Original languageEnglish
JournalEuropean Journal of Applied Physiology
Volume115
Issue number6
Pages (from-to)1219-1231
Number of pages13
ISSN1439-6319
DOIs
Publication statusPublished - 1 Jun 2015

Fingerprint

Dive into the research topics of 'Acute systemic insulin intolerance does not alter the response of the Akt/GSK-3 pathway to environmental hypoxia in human skeletal muscle'. Together they form a unique fingerprint.

Cite this