TY - JOUR
T1 - Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients
AU - Jespersen, Jakob G
AU - Nedergaard, Anders
AU - Reitelseder, Søren
AU - Mikkelsen, Ulla R
AU - Dideriksen, Kasper J
AU - Agergaard, Jakob
AU - Kreiner, Frederik
AU - Pott, Frank C
AU - Schjerling, Peter
AU - Kjaer, Michael
PY - 2011
Y1 - 2011
N2 - Background: Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls. Methodology/Principal Findings: ICU patients were systemically inflamed, moderately hyperglycemic, received insulin therapy, and showed a tendency to lower plasma branched chain amino acids compared with controls. Using Western blotting we measured Akt, GSK3β, mTOR, ribosomal protein S6 kinase (S6k), eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), and muscle ring finger protein 1 (MuRF1); and by RT-PCR we determined mRNA expression of, among others, insulin-like growth factor 1 (IGF-1), FoxO 1, 3 and 4, atrogin1, MuRF1, interleukin-6 (IL-6), tumor necrosis factor α (TNF-α) and myostatin. Unexpectedly, in critically ill ICU patients Akt-mTOR-S6k signaling was substantially higher compared with controls. FoxO1 mRNA was higher in patients, whereas FoxO3, atrogin1 and myostatin mRNAs and MuRF1 protein were lower compared with controls. A moderate correlation (r2 = 0.36, p<0.05) between insulin infusion dose and phosphorylated Akt was demonstrated. Conclusions/Significance: We present for the first time muscle protein turnover signaling in critically ill ICU patients, and we show signaling pathway activity towards a stimulation of muscle protein synthesis and a somewhat inhibited proteolysis.
AB - Background: Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls. Methodology/Principal Findings: ICU patients were systemically inflamed, moderately hyperglycemic, received insulin therapy, and showed a tendency to lower plasma branched chain amino acids compared with controls. Using Western blotting we measured Akt, GSK3β, mTOR, ribosomal protein S6 kinase (S6k), eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), and muscle ring finger protein 1 (MuRF1); and by RT-PCR we determined mRNA expression of, among others, insulin-like growth factor 1 (IGF-1), FoxO 1, 3 and 4, atrogin1, MuRF1, interleukin-6 (IL-6), tumor necrosis factor α (TNF-α) and myostatin. Unexpectedly, in critically ill ICU patients Akt-mTOR-S6k signaling was substantially higher compared with controls. FoxO1 mRNA was higher in patients, whereas FoxO3, atrogin1 and myostatin mRNAs and MuRF1 protein were lower compared with controls. A moderate correlation (r2 = 0.36, p<0.05) between insulin infusion dose and phosphorylated Akt was demonstrated. Conclusions/Significance: We present for the first time muscle protein turnover signaling in critically ill ICU patients, and we show signaling pathway activity towards a stimulation of muscle protein synthesis and a somewhat inhibited proteolysis.
U2 - 10.1371/journal.pone.0018090
DO - 10.1371/journal.pone.0018090
M3 - Journal article
SN - 1932-6203
VL - 6
SP - e18090
JO - P L o S One
JF - P L o S One
IS - 3
ER -