Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex.

C Lukas, Claus Storgaard Sørensen, E Kramer, E Santoni-Rugiu, C Lindeneg, J M Peters, J Bartek, J Lukas

    237 Citations (Scopus)

    Abstract

    In mammalian somatic-cell cycles, progression through the G1-phase restriction point and initiation of DNA replication are controlled by the ability of the retinoblastoma tumour-suppressor protein (pRb) family to regulate the E2F/DP transcription factors. Continuing transcription of E2F target genes beyond the G1/S transition is required for coordinating S-phase progression with cell division, a process driven by cyclin-B-dependent kinase and anaphase-promoting complex (APC)-mediated proteolysis. How E2F-dependent events at G1/S transition are orchestrated with cyclin B and APC activity remains unknown. Here, using an in vivo assay to measure protein stability in real time during the cell cycle, we show that repression of E2F activity or inhibition of cyclin-A-dependent kinase in S phase triggers the destruction of cyclin B1 through the re-assembly of APC, the ubiquitin ligase that is essential for mitotic cyclin proteolysis, with its activatory subunit Cdh1. Phosphorylation-deficient mutant Cdh1 or immunodepletion of cyclin A resulted in assembly of active Cdh1-APC even in S-phase cells. These results implicate an E2F-dependent, cyclin A/Cdk2-mediated phosphorylation of Cdh1 in the timely accumulation of cyclin B1 and the coordination of cell-cycle progression during the post-restriction point period.
    Original languageEnglish
    JournalNature
    Volume401
    Issue number6755
    Pages (from-to)815-8
    Number of pages3
    ISSN0028-0836
    DOIs
    Publication statusPublished - 1999

    Fingerprint

    Dive into the research topics of 'Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex.'. Together they form a unique fingerprint.

    Cite this