A test of the hierarchical model of litter decomposition

Mark A. Bradford*, G. F. Veen, Anne Bonis, Ella M. Bradford, Aimee Taylor Classen, J. Hans C. Cornelissen, Thomas W. Crowther, Jonathan R. De Long, Gregoire T. Freschet, Paul Kardol, Marta Manrubia-Freixa, Daniel S. Maynard, Greg Newman, Richard S. P. Logtestijn, Maria Viketoft, David A. Wardle, William R. Wieder, Stephen A. Wood, Wim H. van der Putten

*Corresponding author for this work
    90 Citations (Scopus)

    Abstract

    Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO2. Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the controlling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France-and capturing both within and among site variation in putative controls-we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales. Furthermore, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local-and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models.

    Original languageEnglish
    JournalNature Ecology & Evolution
    Volume1
    Issue number12
    Pages (from-to)1836-1845
    Number of pages10
    ISSN2397-334X
    DOIs
    Publication statusPublished - Dec 2017

    Fingerprint

    Dive into the research topics of 'A test of the hierarchical model of litter decomposition'. Together they form a unique fingerprint.

    Cite this