TY - JOUR
T1 - A Study of Electrocyclic Reactions in a Molecular Junction
T2 - Mechanistic and Energetic Requirements for Switching in the Coulomb Blockade Regime
AU - Olsen, Stine Tetzschner
AU - Nielsen, Mogens Brøndsted
AU - Hansen, Thorsten
AU - Ratner, Mark A.
AU - Mikkelsen, Kurt Valentin
PY - 2017/6/20
Y1 - 2017/6/20
N2 - Molecular photoswitches incorporated in molecular junctions yield the possibility of light-controlled switching of conductance due to the electronic difference of the photoisomers. Another isomerization mechanism, dark photoswitching, promoted by a voltage stimulus rather than by light, can be operative in the Coulomb blockade regime for a specific charge state of the molecule. Here we elucidate theoretically the mechanistic and thermodynamic restrictions for this dark photoswitching for donor-acceptor substituted 4n and 4n+2 π-electron open-chain oligoenes (1,3-butadiene and 1,3,5-hexatriene) by considering the molecular energies and orbitals of the molecules placed in a junction. For an electrocyclic ring closure reaction to occur for these compounds, we put forward two requirements: a)the closed stereoisomer (cis or trans form) must be of lower energy than the open form, and b)the reaction pathway must be in accordance to the orbital symmetry rules expressed by the Woodward-Hoffmann rules (when the electrodes do not significantly alter the molecular orbital appearances). We find these two requirements to be valid for the dianion of (1E,3Z,5E)-hexa-1,3,5-triene-1,6-diamine, and the Coulomb blockade diamonds were therefore modeled for this compound to elucidate how a dark photoswitching event would manifest itself in the stability plot. From this modeling of conductance as a function of gate and bias potentials, we predict a collapse in Coulomb diamond size, that is, a decrease in the height of the island of zero conductance.
AB - Molecular photoswitches incorporated in molecular junctions yield the possibility of light-controlled switching of conductance due to the electronic difference of the photoisomers. Another isomerization mechanism, dark photoswitching, promoted by a voltage stimulus rather than by light, can be operative in the Coulomb blockade regime for a specific charge state of the molecule. Here we elucidate theoretically the mechanistic and thermodynamic restrictions for this dark photoswitching for donor-acceptor substituted 4n and 4n+2 π-electron open-chain oligoenes (1,3-butadiene and 1,3,5-hexatriene) by considering the molecular energies and orbitals of the molecules placed in a junction. For an electrocyclic ring closure reaction to occur for these compounds, we put forward two requirements: a)the closed stereoisomer (cis or trans form) must be of lower energy than the open form, and b)the reaction pathway must be in accordance to the orbital symmetry rules expressed by the Woodward-Hoffmann rules (when the electrodes do not significantly alter the molecular orbital appearances). We find these two requirements to be valid for the dianion of (1E,3Z,5E)-hexa-1,3,5-triene-1,6-diamine, and the Coulomb blockade diamonds were therefore modeled for this compound to elucidate how a dark photoswitching event would manifest itself in the stability plot. From this modeling of conductance as a function of gate and bias potentials, we predict a collapse in Coulomb diamond size, that is, a decrease in the height of the island of zero conductance.
KW - Coulomb blockade
KW - Electron transport
KW - Photoswitch
KW - Switching
KW - Woodward-Hoffmann rules
U2 - 10.1002/cphc.201700140
DO - 10.1002/cphc.201700140
M3 - Journal article
C2 - 28371098
AN - SCOPUS:85018744544
SN - 1439-4235
VL - 18
SP - 1517
EP - 1525
JO - ChemPhysChem
JF - ChemPhysChem
IS - 12
ER -