A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species

Martina Picmanova, Elizabeth Heather Neilson, Mohammed Saddik Motawie, Carl Erik Olsen, Niels Agerbirk, Christopher J. Gray, Sabine Flitsch, Sebastian Meier, Daniele Silvestro, Kirsten Jørgensen, Raquel Sánchez Pérez, Birger Lindberg Møller, Nanna Bjarnholt

63 Citations (Scopus)

Abstract

Cyanogenic glycosides are phytoanticipins involved in plant defence against herbivores by virtue of their ability to release toxic hydrogen cyanide (HCN) upon tissue disruption. In addition, endogenous turnover of cyanogenic glycosides without the liberation of HCN may offer plants an important source of reduced nitrogen at specific developmental stages. To investigate the presence of putative turnover products of cyanogenic glycosides, comparative metabolic profiling using LC-MS/MS and high resolution MS (HR-MS) complemented by ion-mobility MS was carried out in three cyanogenic plant species: cassava, almond and sorghum. In total, the endogenous formation of 36 different chemical structures related to the cyanogenic glucosides linamarin, lotaustralin, prunasin, amygdalin and dhurrin was discovered, including di- and tri-glycosides derived from these compounds. The relative abundance of the compounds was assessed in different tissues and developmental stages. Based on results common to the three phylogenetically unrelated species, a potential recycling endogenous turnover pathway for cyanogenic glycosides is described in which reduced nitrogen and carbon are recovered for primary metabolism without the liberation of free HCN. Glycosides of amides, carboxylic acids and 'anitriles' derived from cyanogenic glycosides appear as common intermediates in this pathway and may also have individual functions in the plant. The recycling of cyanogenic glycosides and the biological significance of the presence of the turnover products in cyanogenic plants open entirely new insights into the multiplicity of biological roles cyanogenic glycosides may play in plants.

Original languageEnglish
JournalBiochemical Journal
Volume469
Issue number3
Pages (from-to)375-389
Number of pages15
ISSN0264-6021
DOIs
Publication statusPublished - 1 Aug 2015

Fingerprint

Dive into the research topics of 'A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species'. Together they form a unique fingerprint.

Cite this