A nonlinear mixed-effects model for simultaneous smoothing and registration of functional data

17 Citations (Scopus)

Abstract

We consider misaligned functional data, where data registration is necessary for proper statistical analysis. This paper proposes to treat misalignment as a nonlinear random effect, which makes simultaneous likelihood inference for horizontal and vertical effects possible. By simultaneously fitting the model and registering data, the proposed method estimates parameters and predicts random effects more precisely than conventional methods that register data in preprocessing. The ability of the model to estimate both hyperparameters and predict horizontal and vertical effects are illustrated on both simulated and real data.
Original languageEnglish
JournalPattern Recognition Letters
Volume38
Pages (from-to)1-7
Number of pages7
ISSN0167-8655
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'A nonlinear mixed-effects model for simultaneous smoothing and registration of functional data'. Together they form a unique fingerprint.

Cite this