TY - JOUR
T1 - A new method to distinguish hadronically decaying boosted Z bosons from W bosons using the ATLAS detector
AU - Aad, G.
AU - Abbott, B.
AU - Abdallah, J.
AU - Abdinov, O.
AU - Aben, R.
AU - Abolins, M.
AU - AbouZeid, O.S.
AU - Abramowicz, H.
AU - Abreu, H.
AU - Abreu, R.
AU - Adye, T.
AU - Dam, Mogens
AU - Hansen, Jørn Dines
AU - Hansen, Jørgen Beck
AU - Xella, Stefania
AU - Hansen, Peter Henrik
AU - Petersen, Troels Christian
AU - Thomsen, Lotte Ansgaard
AU - Pingel, Almut Maria
AU - Løvschall-Jensen, Ask Emil
AU - Alonso Diaz, Alejandro
AU - Monk, James William
AU - Pedersen, Lars Egholm
AU - Wiglesworth, Graig
AU - Galster, Gorm Aske Gram Krohn
PY - 2016/5/1
Y1 - 2016/5/1
N2 - The distribution of particles inside hadronic jets produced in the decay of boosted W and Z bosons can be used to discriminate such jets from the continuum background. Given that a jet has been identified as likely resulting from the hadronic decay of a boosted W or Z boson, this paper presents a technique for further differentiating Z bosons from W bosons. The variables used are jet mass, jet charge, and a b-tagging discriminant. A likelihood tagger is constructed from these variables and tested in the simulation of W′→ WZ for bosons in the transverse momentum range 200 GeV < pT< 400 GeV in s= 8 TeV pp collisions with the ATLAS detector at the LHC. For Z-boson tagging efficiencies of ϵZ= 90 , 50, and 10 % , one can achieve W+-boson tagging rejection factors (1 / ϵW+ ) of 1.7, 8.3 and 1000, respectively. It is not possible to measure these efficiencies in the data due to the lack of a pure sample of high pT, hadronically decaying Z bosons. However, the modelling of the tagger inputs for boosted W bosons is studied in data using a tt¯ -enriched sample of events in 20.3 fb- 1 of data at s= 8 TeV. The inputs are well modelled within uncertainties, which builds confidence in the expected tagger performance.
AB - The distribution of particles inside hadronic jets produced in the decay of boosted W and Z bosons can be used to discriminate such jets from the continuum background. Given that a jet has been identified as likely resulting from the hadronic decay of a boosted W or Z boson, this paper presents a technique for further differentiating Z bosons from W bosons. The variables used are jet mass, jet charge, and a b-tagging discriminant. A likelihood tagger is constructed from these variables and tested in the simulation of W′→ WZ for bosons in the transverse momentum range 200 GeV < pT< 400 GeV in s= 8 TeV pp collisions with the ATLAS detector at the LHC. For Z-boson tagging efficiencies of ϵZ= 90 , 50, and 10 % , one can achieve W+-boson tagging rejection factors (1 / ϵW+ ) of 1.7, 8.3 and 1000, respectively. It is not possible to measure these efficiencies in the data due to the lack of a pure sample of high pT, hadronically decaying Z bosons. However, the modelling of the tagger inputs for boosted W bosons is studied in data using a tt¯ -enriched sample of events in 20.3 fb- 1 of data at s= 8 TeV. The inputs are well modelled within uncertainties, which builds confidence in the expected tagger performance.
U2 - 10.1140/epjc/s10052-016-4065-1
DO - 10.1140/epjc/s10052-016-4065-1
M3 - Journal article
C2 - 28280428
SN - 1434-6044
VL - 76
JO - The European Physical Journal C: Particles and Fields
JF - The European Physical Journal C: Particles and Fields
IS - 5
M1 - 238
ER -