A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

Huaying Zhao, Rodolfo Ghirlando, Carlos Alfonso, Fumio Arisaka, Ilan Attali, David L Bain, Marina M Bakhtina, Donald F Becker, Gregory J Bedwell, Ahmet Bekdemir, Tabot M D Besong, Catherine Birck, Chad A Brautigam, William Brennerman, Olwyn Byron, Agnieszka Bzowska, Jonathan B Chaires, Catherine T Chaton, Helmut Cölfen, Keith D ConnaghanKimberly A Crowley, Ute Curth, Tina Daviter, William L Dean, Ana I Díez, Christine Ebel, Debra M Eckert, Leslie E Eisele, Edward Eisenstein, Patrick England, Carlos Escalante, Jeffrey A Fagan, Robert Fairman, Ron M Finn, Wolfgang Fischle, José García de la Torre, Jayesh Gor, Henning Gustafsson, Damien Hall, Stephen E Harding, José G Hernández Cifre, Andrew B Herr, Elizabeth E Howell, Richard S Isaac, Shu-Chuan Jao, Davis Jose, Soon-Jong Kim, Bashkim Kokona, Jack A Kornblatt, Dalibor Kosek, Elena Krayukhina, Daniel Krzizike, Eric A Kusznir, Hyewon Kwon, Adam Larson, Thomas M Laue, Aline Le Roy, Andrew P Leech, Hauke Lilie, Karolin Luger, Juan R Luque-Ortega, Jia Ma, Carrie A May, Ernest L Maynard, Anna Modrak-Wojcik, Yee-Foong Mok, Norbert Mücke, Luitgard Nagel-Steger, Geeta J Narlikar, Masanori Noda, Amanda Nourse, Tomas Obsil, Chad K Park, Jin-Ku Park, Peter D Pawelek, Erby E Perdue, Stephen J Perkins, Matthew A Perugini, Craig L Peterson, Martin G Peverelli, Grzegorz Piszczek, Gali Prag, Peter E Prevelige, Bertrand D E Raynal, Lenka Rezabkova, Klaus Richter, Alison E Ringel, Rose Rosenberg, Arthur J Rowe, Arne C Rufer, David J Scott, Javier G Seravalli, Alexandra S Solovyova, Renjie Song, David Staunton, Caitlin Stoddard, Katherine Stott, Holger M Strauss, Werner W Streicher, John P Sumida, Sarah G Swygert, Roman H Szczepanowski, Ingrid Tessmer, Ronald T Toth, Ashutosh Tripathy, Susumu Uchiyama, Stephan F W Uebel, Satoru Unzai, Anna Vitlin Gruber, Peter H von Hippel, Christine Wandrey, Szu-Huan Wang, Steven E Weitzel, Beata Wielgus-Kutrowska, Cynthia Wolberger, Martin Wolff, Edward Wright, Yu-Sung Wu, Jacinta M Wubben, Peter Schuck

55 Citations (Scopus)

Abstract

Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.

Original languageEnglish
Article numbere0126420
JournalPLOS ONE
Volume10
Issue number5
Number of pages30
ISSN1932-6203
DOIs
Publication statusPublished - 21 May 2015

Fingerprint

Dive into the research topics of 'A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation'. Together they form a unique fingerprint.

Cite this