Abstract
We consider the popular k-means problem in ddimensional Euclidean space. Recently Friggstad, Rezapour, Salavatipour [FOCS'16] and Cohen-Addad, Klein, Mathieu [FOCS'16] showed that the standard local search algorithm yields a p1"q-approximation in time pn kq1-"Opdq, giving the first polynomial-time approximation scheme for the problem in low-dimensional Euclidean space. While local search achieves optimal approximation guarantees, it is not competitive with the state-of-the-art heuristics such as the famous kmeans++ and D2-sampling algorithms. In this paper, we aim at bridging the gap between theory and practice by giving a p1 "q-approximation algorithm for low-dimensional k-means running in time nk plog nqpd" 1qOpdq, and so matching the running time of the k-means++ and D2-sampling heuristics up to polylogarithmic factors. We speed-up the local search approach by making a non-standard use of randomized dissections that allows to find the best local move efficiently using a quite simple dynamic program. We hope that our techniques could help design better local search heuristics for geometric problems.
Original language | English |
---|---|
Title of host publication | Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms |
Editors | Artur Czumaj |
Publisher | Society for Industrial and Applied Mathematics |
Publication date | 2018 |
Pages | 430-440 |
ISBN (Electronic) | 9781611975031 |
DOIs | |
Publication status | Published - 2018 |
Event | 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018 - New Orleans, United States Duration: 7 Jan 2018 → 10 Jan 2018 |
Conference
Conference | 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 07/01/2018 → 10/01/2018 |
Sponsor | ACM Special Interest Group on Algorithms and Computation Theory (SIGACT), SIAM Activity Group on Discrete Mathematics |