A combined proteome and ultrastructural localization analysis of 14-3-3 proteins in transformed human amnion (AMA) cells

T. Shen, G. Ohlsson, P. Gromov, I. Gromova, J.E. Celis, José Moreira

20 Citations (Scopus)

Abstract

The 14-3-3 proteins constitute a family of highly conserved and broadly expressed multifunctional polypeptides that are involved in a variety of important cellular processes that include cell cycle progression, growth, differentiation, and apoptosis. Although the exact celluar function(s) of 14-3-3 proteins is not fully elucidated, as a rule these proteins act by binding to protein ligands, thus regulating their activity; so far more than 300 cellular proteins have been reported to interact with 14-3-3 proteins. Binding to cognate interacting partners is isoform-specific, but redundancy also exists as several binding peptides can be recognized by all isoforms, and some functions can be carried out by any isoform indistinctly. Moreover by interacting with different ligands in a spatially and temporally regulated fashion the same isoform can play multiple possibly even opposing roles where the resultant cellular outcome will be determined by the integration of the various effects. Although there is a large body of literature on specific aspects of 14-3-3 biology, not much is known on the coordinated aspects of 14-3-3 isoform expression, post-translational modifications, and subcellular localization. To address the question of isoform-specific differences, we carried out a comparative analysis of the patterns of expression, phosphorylation, and subcellular localization of the 14-3-3 β, ε, σ, τ, and ζ protein isoforms in transformed human amnion (AMA) cells. To validate as well as broaden our observations we analyzed the occurrence of the various isoforms in a large number of established cell lines and mammary and urothelial tissue specimens. Given the systematic approach we undertook and our application of isoform-discriminating technologies to the analysis of various cellular systems, we expect the data presented in this study to serve as an enabling resource for researchers working with 14-3-3 proteins.
Original languageEnglish
JournalMolecular and Cellular Proteomics
Volume7
Issue number7
Pages (from-to)1225-1240
Number of pages16
ISSN1535-9476
DOIs
Publication statusPublished - 1 Jul 2008
Externally publishedYes

Fingerprint

Dive into the research topics of 'A combined proteome and ultrastructural localization analysis of 14-3-3 proteins in transformed human amnion (AMA) cells'. Together they form a unique fingerprint.

Cite this