TY - JOUR
T1 - Warts signaling controls organ and body growth through regulation of ecdysone
AU - Møller, Morten Erik
AU - Nagy, Stanislav
AU - Gerlach, Stephan Uwe
AU - Søgaard, Karen Colbjørn
AU - Danielsen, Erik Thomas
AU - Texada, Michael James
AU - Rewitz, Kim Furbo
N1 - Copyright © 2017 Elsevier Ltd. All rights reserved.
PY - 2017/6/5
Y1 - 2017/6/5
N2 - Coordination of growth between individual organs and the whole body is essential during development to produce adults with appropriate size and proportions [1, 2]. How local organ-intrinsic signals and nutrient-dependent systemic factors are integrated to generate correctly proportioned organisms under different environmental conditions is poorly understood. In Drosophila, Hippo/Warts signaling functions intrinsically to regulate tissue growth and organ size [3, 4], whereas systemic growth is controlled via antagonistic interactions of the steroid hormone ecdysone and nutrient-dependent insulin/insulin-like growth factor (IGF) (insulin) signaling [2, 5]. The interplay between insulin and ecdysone signaling regulates systemic growth and controls organismal size. Here, we show that Warts (Wts; LATS1/2) signaling regulates systemic growth in Drosophila by activating basal ecdysone production, which negatively regulates body growth. Further, we provide evidence that Wts mediates effects of insulin and the neuropeptide prothoracicotropic hormone (PTTH) on regulation of ecdysone production through Yorkie (Yki; YAP/TAZ) and the microRNA bantam (ban). Thus, Wts couples insulin signaling with ecdysone production to adjust systemic growth in response to nutritional conditions during development. Inhibition of Wts activity in the ecdysone-producing cells non-autonomously slows the growth of the developing imaginal-disc tissues while simultaneously leading to overgrowth of the animal. This indicates that ecdysone, while restricting overall body growth, is limiting for growth of certain organs. Our data show that, in addition to its well-known intrinsic role in restricting organ growth, Wts/Yki/ban signaling also controls growth systemically by regulating ecdysone production, a mechanism that we propose controls growth between tissues and organismal size in response to nutrient availability.
AB - Coordination of growth between individual organs and the whole body is essential during development to produce adults with appropriate size and proportions [1, 2]. How local organ-intrinsic signals and nutrient-dependent systemic factors are integrated to generate correctly proportioned organisms under different environmental conditions is poorly understood. In Drosophila, Hippo/Warts signaling functions intrinsically to regulate tissue growth and organ size [3, 4], whereas systemic growth is controlled via antagonistic interactions of the steroid hormone ecdysone and nutrient-dependent insulin/insulin-like growth factor (IGF) (insulin) signaling [2, 5]. The interplay between insulin and ecdysone signaling regulates systemic growth and controls organismal size. Here, we show that Warts (Wts; LATS1/2) signaling regulates systemic growth in Drosophila by activating basal ecdysone production, which negatively regulates body growth. Further, we provide evidence that Wts mediates effects of insulin and the neuropeptide prothoracicotropic hormone (PTTH) on regulation of ecdysone production through Yorkie (Yki; YAP/TAZ) and the microRNA bantam (ban). Thus, Wts couples insulin signaling with ecdysone production to adjust systemic growth in response to nutritional conditions during development. Inhibition of Wts activity in the ecdysone-producing cells non-autonomously slows the growth of the developing imaginal-disc tissues while simultaneously leading to overgrowth of the animal. This indicates that ecdysone, while restricting overall body growth, is limiting for growth of certain organs. Our data show that, in addition to its well-known intrinsic role in restricting organ growth, Wts/Yki/ban signaling also controls growth systemically by regulating ecdysone production, a mechanism that we propose controls growth between tissues and organismal size in response to nutrient availability.
KW - Journal Article
U2 - 10.1016/j.cub.2017.04.048
DO - 10.1016/j.cub.2017.04.048
M3 - Journal article
C2 - 28528906
SN - 0960-9822
VL - 27
SP - 1652
EP - 1659
JO - Current Biology
JF - Current Biology
IS - 11
ER -