Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

Peter Mondrup Rasmussen, Kristoffer Hougaard Madsen, Torben Ellegaard Lund, Lars Kai Hansen

44 Citationer (Scopus)

Abstract

There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus on visualization of such nonlinear kernel models. Specifically, we investigate the sensitivity map as a technique for generation of global summary maps of kernel classification models. We illustrate the performance of the sensitivity map on functional magnetic resonance (fMRI) data based on visual stimuli. We show that the performance of linear models is reduced for certain scan labelings/categorizations in this data set, while the nonlinear models provide more flexibility. We show that the sensitivity map can be used to visualize nonlinear versions of kernel logistic regression, the kernel Fisher discriminant, and the SVM, and conclude that the sensitivity map is a versatile and computationally efficient tool for visualization of nonlinear kernel models in neuroimaging.
OriginalsprogEngelsk
TidsskriftNeuroImage
Vol/bind55
Udgave nummer3
Sider (fra-til)1120-1131
Antal sider12
ISSN1053-8119
DOI
StatusUdgivet - 1 apr. 2011

Fingeraftryk

Dyk ned i forskningsemnerne om 'Visualization of nonlinear kernel models in neuroimaging by sensitivity maps'. Sammen danner de et unikt fingeraftryk.

Citationsformater