TY - JOUR
T1 - Ventilatory strategy during liver transplantation
T2 - implications for near-infrared spectroscopy-determined frontal lobe oxygenation
AU - Sørensen, Henrik
AU - Grocott, Hilary P
AU - Niemann, Mads
AU - Rasmussen, Allan
AU - Hillingsø, Jens G
AU - Frederiksen, Hans J
AU - Secher, Niels H
PY - 2014/8/25
Y1 - 2014/8/25
N2 - Background: As measured by near infrared spectroscopy (NIRS), cerebral oxygenation (ScO2) may be reduced by hyperventilation in the anhepatic phase of liver transplantation surgery (LTx). Conversely, the brain may be subjected to hyperperfusion during reperfusion of the grafted liver. We investigated the relationship between ScO2 and end-tidal CO2 tension (EtCO2) during the various phases of LTx. Methods: In this retrospective study, 49 patients undergoing LTx were studied. Forehead ScO2, EtCO2, minute ventilation (VE), and hemodynamic variables were recorded from the beginning of surgery through to the anhepatic and reperfusion phases during LTx. Results: In the anhepatic phase, ScO2 was reduced by 4.3% (95% confidence interval: 2.5-6.0%; P < 0.0001), EtCO2 by 0.3 kPa (0.2-0.4 kPa; P < 0.0001), and VE by 0.4 L/min (0.1-0.7 L/min; P = 0.0018). Conversely, during reperfusion of the donated liver, ScO2 increased by 5.5% (3.8-7.3%), EtCO2 by 0.7 kPa (0.5-0.8 kPa), and VE by 0.6 L/min (0.3-0.9 L/min; all P < 0.0001). Changes in ScO2 were correlated to those in EtCO2 (Pearson r = 0.74; P < 0.0001). Conclusion: During LTx, changes in ScO2 are closely correlated to those of EtCO2. Thus, this retrospective analysis suggests that attention to maintain a targeted EtCO2 would result in a more stable ScO2 during the operation.
AB - Background: As measured by near infrared spectroscopy (NIRS), cerebral oxygenation (ScO2) may be reduced by hyperventilation in the anhepatic phase of liver transplantation surgery (LTx). Conversely, the brain may be subjected to hyperperfusion during reperfusion of the grafted liver. We investigated the relationship between ScO2 and end-tidal CO2 tension (EtCO2) during the various phases of LTx. Methods: In this retrospective study, 49 patients undergoing LTx were studied. Forehead ScO2, EtCO2, minute ventilation (VE), and hemodynamic variables were recorded from the beginning of surgery through to the anhepatic and reperfusion phases during LTx. Results: In the anhepatic phase, ScO2 was reduced by 4.3% (95% confidence interval: 2.5-6.0%; P < 0.0001), EtCO2 by 0.3 kPa (0.2-0.4 kPa; P < 0.0001), and VE by 0.4 L/min (0.1-0.7 L/min; P = 0.0018). Conversely, during reperfusion of the donated liver, ScO2 increased by 5.5% (3.8-7.3%), EtCO2 by 0.7 kPa (0.5-0.8 kPa), and VE by 0.6 L/min (0.3-0.9 L/min; all P < 0.0001). Changes in ScO2 were correlated to those in EtCO2 (Pearson r = 0.74; P < 0.0001). Conclusion: During LTx, changes in ScO2 are closely correlated to those of EtCO2. Thus, this retrospective analysis suggests that attention to maintain a targeted EtCO2 would result in a more stable ScO2 during the operation.
U2 - 10.3389/fphys.2014.00321
DO - 10.3389/fphys.2014.00321
M3 - Journal article
C2 - 25202281
SN - 1664-042X
VL - 5
SP - 1
EP - 6
JO - Frontiers in Physiology
JF - Frontiers in Physiology
M1 - 321
ER -