Vanishing at infinity on homogeneous spaces of reductive type

Bernhard Krötz, Eitan Sayag, Henrik Schlichtkrull

2 Citationer (Scopus)

Abstract

Let be a real reductive group and a unimodular homogeneous space. The space is said to satisfy VAI (vanishing at infinity) if all smooth vectors in the Banach representations vanish at infinity, <![CDATA[$1\leqslant p. For connected we show that satisfies VAI if and only if it is of reductive type.

OriginalsprogEngelsk
TidsskriftCompositio Mathematica
Vol/bind152
Udgave nummer7
Sider (fra-til)1385-1397
ISSN0010-437X
DOI
StatusUdgivet - 1 jul. 2016

Fingeraftryk

Dyk ned i forskningsemnerne om 'Vanishing at infinity on homogeneous spaces of reductive type'. Sammen danner de et unikt fingeraftryk.

Citationsformater