Abstract
Let be a real reductive group and a unimodular homogeneous space. The space is said to satisfy VAI (vanishing at infinity) if all smooth vectors in the Banach representations vanish at infinity, <![CDATA[$1\leqslant p. For connected we show that satisfies VAI if and only if it is of reductive type.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Compositio Mathematica |
Vol/bind | 152 |
Udgave nummer | 7 |
Sider (fra-til) | 1385-1397 |
ISSN | 0010-437X |
DOI | |
Status | Udgivet - 1 jul. 2016 |