TY - JOUR
T1 - Validation and Optimization of an Ex Vivo Assay of Intestinal Mucosal Biopsies in Crohn's Disease
T2 - Reflects Inflammation and Drug Effects
AU - Vadstrup, Kasper
AU - Galsgaard, Elisabeth Douglas
AU - Gerwien, Jens
AU - Vester-Andersen, Marianne Kajbæk
AU - Pedersen, Julie Steen
AU - Rasmussen, Julie
AU - Neermark, Søren
AU - Kiszka-Kanowitz, Marianne
AU - Jensen, Teis
AU - Bendtsen, Flemming
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Crohn's disease (CD) is a chronic illness demanding better therapeutics. The marketed biologics only benefit some patients or elicit diminishing effect over time. To complement the known methods in drug development and to obtain patient specific drug responses, we optimized and validated a known human explant method to test drug candidates and pathophysiological conditions in CD intestinal biopsies. Mucosal biopsies from 27 CD patients and 6 healthy individuals were collected to validate an explant assay test where the polarized tissue was cultured on a novel metal mesh disk, slightly immersed in medium imitating an air-liquid interphase. After culture in high oxygen for 24 hours with or without biological treatment in the medium, biopsy integrity and penetration of antibodies was measured by immunohistochemistry (IHC). Nine cytokines were quantified in the conditioned medium as a read-out for degree of inflammation in individual biopsies and used to evaluate treatment efficacy. The biopsies were well-preserved, showing few structural changes. IHC revealed tissue penetration of antibodies demonstrating ability to test therapeutic antibodies. The cytokine release to the medium showed that the assay can distinguish between inflammation states and then validate the known effect of two treatment biologics confirmed by a detection panel of five specific cytokines. Our data also suggest that the assay would be able to indicate which patients are responders to anti-TNF-α therapeutics, and which are non-responders. This study demonstrates this version of an ex vivo culture as a valid and robust assay to assess inflammation in mucosal biopsies and test of the efficacy of novel drug candidates and current treatments on individual patients-potentially for a personalized medicine approach.
AB - Crohn's disease (CD) is a chronic illness demanding better therapeutics. The marketed biologics only benefit some patients or elicit diminishing effect over time. To complement the known methods in drug development and to obtain patient specific drug responses, we optimized and validated a known human explant method to test drug candidates and pathophysiological conditions in CD intestinal biopsies. Mucosal biopsies from 27 CD patients and 6 healthy individuals were collected to validate an explant assay test where the polarized tissue was cultured on a novel metal mesh disk, slightly immersed in medium imitating an air-liquid interphase. After culture in high oxygen for 24 hours with or without biological treatment in the medium, biopsy integrity and penetration of antibodies was measured by immunohistochemistry (IHC). Nine cytokines were quantified in the conditioned medium as a read-out for degree of inflammation in individual biopsies and used to evaluate treatment efficacy. The biopsies were well-preserved, showing few structural changes. IHC revealed tissue penetration of antibodies demonstrating ability to test therapeutic antibodies. The cytokine release to the medium showed that the assay can distinguish between inflammation states and then validate the known effect of two treatment biologics confirmed by a detection panel of five specific cytokines. Our data also suggest that the assay would be able to indicate which patients are responders to anti-TNF-α therapeutics, and which are non-responders. This study demonstrates this version of an ex vivo culture as a valid and robust assay to assess inflammation in mucosal biopsies and test of the efficacy of novel drug candidates and current treatments on individual patients-potentially for a personalized medicine approach.
KW - Journal Article
U2 - 10.1371/journal.pone.0155335
DO - 10.1371/journal.pone.0155335
M3 - Journal article
C2 - 27171179
SN - 1932-6203
VL - 11
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 5
M1 - e0155335
ER -