Using DEA and worst practice DEA in credit risk evaluation

Joseph C. Paradi*, Mette Asmild, Paul C. Simak

*Corresponding author af dette arbejde
83 Citationer (Scopus)

Abstract

The purpose of this paper is to introduce the concept of worst practice DEA, which aims at identifying worst performers by placing them on the frontier. This is particularly relevant for our application to credit risk evaluation, but this also has general relevance since the worst performers are where the largest improvement potential can be found. The paper also proposes to use a layering technique instead of the traditional cut-off point approach, since this enables incorporation of risk attitudes and risk-based pricing. Finally, it is shown how the use of a combination of normal and worst practice DEA models enable detection of self-identifiers. The results of the empirical application on credit risk evaluation validate the method. The best combination of layered normal and worst practice DEA models yields an impressive 100% bankruptcy and 78% non-bankruptcy prediction accuracy in the calibration data set, and equally convincing 100% and 67% out-of-sample classification accuracies.
OriginalsprogEngelsk
TidsskriftJournal of Productivity Analysis
Vol/bind21
Udgave nummer2
Sider (fra-til)153-165
Antal sider13
ISSN0895-562X
DOI
StatusUdgivet - mar. 2004
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Using DEA and worst practice DEA in credit risk evaluation'. Sammen danner de et unikt fingeraftryk.

Citationsformater