TY - JOUR
T1 - Transcriptomic analysis of immunity in rainbow trout (Oncorhynchus mykiss) gills infected by Ichthyophthirius multifiliis
AU - Syahputra, Khairul
AU - Kania, Per W
AU - Al-Jubury, Azmi
AU - Jafaar, Rzgar M
AU - Dirks, Ron P
AU - Buchmann, Kurt
N1 - Copyright © 2018 Elsevier Ltd. All rights reserved.
PY - 2019/3
Y1 - 2019/3
N2 - The parasite Ichthyophthirius multifiliis infecting skin, fins and gills of a wide range of freshwater fish species, including rainbow trout, is known to induce a protective immune response in the host. Although a number of studies have reported activation of several immune genes in infected fish host, the immune response picture is still considered incomplete. In order to address this issue, a comparative transcriptomic analysis was performed on infected versus uninfected rainbow trout gills and it showed that a total of 3352 (7.2%) out of 46,585 identified gene sequences were significantly regulated after parasite infection. Of differentially expressed gene sequences, 1796 genes were up-regulated and 1556 genes were down-regulated. These were classified into 61 Gene Ontology (GO) terms and mapped to 282 reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Infection of I. multifiliis induced a clear differential expression of immune genes, related to both innate and adaptive immunity. A total of 268 (6.86%) regulated gene sequences were known to take part in 16 immune-related pathways. These involved pathways related to the innate immunity such as the Chemokine signaling pathway, Platelet activation, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and Leukocyte transendothelial migration. Elevated transcription of genes encoding the TLR 8 gene and chemokines (CCL4, CCL19, CCL28, CXCL8, CXCL11, CXCL13, CXCL14) was recorded indicating their roles in recognition of I. multifiliis and subsequent induction of the inflammatory response, respectively. A number of upregulated genes in infected gills were associated with antigen processing/presentation and T and B cell receptor signaling (including B cell marker CD22 involved in B cell development). Overall the analysis supports the notion that I. multifiliis induces a massive and varied innate response upon which a range of adaptive immune responses are established which may contribute to the long lasting protection of immunized rainbow trout.
AB - The parasite Ichthyophthirius multifiliis infecting skin, fins and gills of a wide range of freshwater fish species, including rainbow trout, is known to induce a protective immune response in the host. Although a number of studies have reported activation of several immune genes in infected fish host, the immune response picture is still considered incomplete. In order to address this issue, a comparative transcriptomic analysis was performed on infected versus uninfected rainbow trout gills and it showed that a total of 3352 (7.2%) out of 46,585 identified gene sequences were significantly regulated after parasite infection. Of differentially expressed gene sequences, 1796 genes were up-regulated and 1556 genes were down-regulated. These were classified into 61 Gene Ontology (GO) terms and mapped to 282 reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Infection of I. multifiliis induced a clear differential expression of immune genes, related to both innate and adaptive immunity. A total of 268 (6.86%) regulated gene sequences were known to take part in 16 immune-related pathways. These involved pathways related to the innate immunity such as the Chemokine signaling pathway, Platelet activation, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and Leukocyte transendothelial migration. Elevated transcription of genes encoding the TLR 8 gene and chemokines (CCL4, CCL19, CCL28, CXCL8, CXCL11, CXCL13, CXCL14) was recorded indicating their roles in recognition of I. multifiliis and subsequent induction of the inflammatory response, respectively. A number of upregulated genes in infected gills were associated with antigen processing/presentation and T and B cell receptor signaling (including B cell marker CD22 involved in B cell development). Overall the analysis supports the notion that I. multifiliis induces a massive and varied innate response upon which a range of adaptive immune responses are established which may contribute to the long lasting protection of immunized rainbow trout.
KW - Adaptive Immunity/genetics
KW - Animals
KW - Ciliophora Infections/genetics
KW - Fish Diseases/genetics
KW - Gene Expression Profiling/veterinary
KW - Gills/immunology
KW - Hymenostomatida/physiology
KW - Immunity, Innate/genetics
KW - Oncorhynchus mykiss
KW - Transcriptome/genetics
U2 - 10.1016/j.fsi.2018.11.075
DO - 10.1016/j.fsi.2018.11.075
M3 - Journal article
C2 - 30513380
SN - 1050-4648
VL - 86
SP - 486
EP - 496
JO - Fish and Shellfish Immunology
JF - Fish and Shellfish Immunology
ER -