Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions

Bernd J. Schroers, Matthias Wilhelm

4 Citationer (Scopus)

Abstract

We consider the deformation of the Poincaré group in 2+1 dimensions into the quantum double of the Lorentz group and construct Lorentz-covariant momentum-space formulations of the irreducible representations describing massive particles with spin 0, 1/2 and 1 in the deformed theory. We discuss ways of obtaining non-commutative versions of relativistic wave equations like the Klein-Gordon, Dirac and Proca equations in 2+1 dimensions by applying a suitably defined Fourier transform, and point out the relation between non-commutative Dirac equations and the exponentiated Dirac operator considered by Atiyah and Moore.

OriginalsprogEngelsk
TidsskriftSymmetry, Integrability and Geometry: Methods and Applications
Vol/bind10
Sider (fra-til)053
ISSN1815-0659
DOI
StatusUdgivet - 20 maj 2014
Udgivet eksterntJa

Emneord

  • hep-th
  • gr-qc
  • math-ph
  • math.MP

Fingeraftryk

Dyk ned i forskningsemnerne om 'Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions'. Sammen danner de et unikt fingeraftryk.

Citationsformater