Abstract
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Chemical Technology and Biotechnology |
Vol/bind | 83 |
Udgave nummer | 4 |
Sider (fra-til) | 444-463 |
Antal sider | 20 |
ISSN | 0268-2575 |
DOI | |
Status | Udgivet - 2008 |
Udgivet eksternt | Ja |
Adgang til dokumentet
Fingeraftryk
Dyk ned i forskningsemnerne om 'Tissue engineering of cartilages using biomatrices'. Sammen danner de et unikt fingeraftryk.Citationsformater
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Tissue engineering of cartilages using biomatrices. / Melrose, James; Chuang, Christine; Whitelock, John.
I: Journal of Chemical Technology and Biotechnology, Bind 83, Nr. 4, 2008, s. 444-463.Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › peer review
}
TY - JOUR
T1 - Tissue engineering of cartilages using biomatrices
AU - Melrose, James
AU - Chuang, Christine
AU - Whitelock, John
N1 - Cited By :13 Export Date: 24 June 2016 References: Ingber, D.E., Mow, V.C., Butler, D., Niklason, L., Huard, J., Mao, J., Tissue engineering and developmental biology: Going biomimetic (2006) Tissue Eng, 12, pp. 3265-3283; Ornitz, D.M., FGF signaling in the developing endochondral skeleton (2005) Cytokine Growth Factor Rev, 16, pp. 205-213; Melrose, J., Smith, S., Ghosh, P., Whitelock, J., Perlecan, the multidomain heparan sulfate proteoglycan of basement membranes, is also a prominent component of the cartilaginous primordia in the developing human fetal spine (2003) J Histochem Cytochem, 51, pp. 1331-1341; Melrose, J., Smith, S., Knox, S., Whitelock, J., Perlecan, the multidomain HS-proteoglycan of basement membranes, is a prominent pericellular component of ovine hypertrophic vertebral growth plate and cartilaginous endplate chondrocytes (2002) Histochem Cell Biol, 118, pp. 269-280; Melrose, J., Smith, S., Whitelock, J., Perlecan immunolocalises to perichondral vessels and canals in human foetal cartilagenous promordia in early vascular and matrix remodelling events associated with diarthrodial-joint development (2004) J Histochem Cytochem, 52, pp. 1405-1413; Denker, A.E., Haas, A.R., Nicoll, S.B., Tuan, R.S., Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells. I. Stimulation by bone morphogenetic protein-2 in high-density micromass cultures (1999) Differentiation, 64, pp. 67-76; Denker, A.E., Nicoll, S.B., Tuan, R.S., Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-beta 1 (1995) Differentiation, 59, pp. 25-34; Han, F., Gilbert, J.R., Harrison, G., Adams, C.S., Freeman, T., Tao, Z., Transforming growth factor-betal regulates fibronectin isoform expression and splicing factor SRp40 expression during ATDC5 chondrogenic maturation (2007) Exp Cell Res, 313, pp. 1518-1532; Aufderheide, A.C., Athanasiou, K.A., Comparison of scaffolds and culture conditions for tissue engineering of the knee meniscus (2005) Tissue Eng, 11, pp. 1095-1104; Palmer, G.D., Steinert, A., Pascher, A., Gouze, E., Gouze, J.N., Betz, O., Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro (2005) Mol Ther, 12, pp. 219-228; Owens, E.M., Solursh, M., Cell-cell interaction by mouse limb cells during in vitro chondrogenesis: Analysis of the brachypod mutation (1982) Dev Biol, 91, pp. 376-388; Kato, Y., Iwamoto, M., Fibroblast growth factor is an inhibitor of chondrocyte terminal differentiation (1990) J Biol Chem, 265, pp. 5903-5909; Oh, C.D., Chun, J.S., Signaling mechanisms leading to the regulation of differentiation and apoptosis of articular chondrocytes by insulin-like growth factor-1 (2003) J Biol Chem, 278, pp. 36563-36571; Worster, A.A., Brower-Toland, B.D., Fortier, L.A., Bent, S.J., Williams, J., Nixon, A.J., Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-betal in monolayer and insulin-like growth factor-I in a three-dimensional matrix (2001) J Orthop Res, 19, pp. 738-749; Phornphutkul, C., Wu, K.Y., Yang, X., Chen, Q., Gruppuso, P.A., Insulin-like growth factor-I signaling is modified during chondrocyte differentiation (2004) J Endocrinol, 183, pp. 477-486; Acosta, C.A., Izal, I., Ripalda, P., Douglas-Price, A.L., Forriol, F., Gene expression and proliferation analysis in young, aged, and osteoarthritic sheep chondrocytes effect of growth factor treatment (2006) J Orthop Res, 24, pp. 2087-2094; Miyakoshi, N., Kobayashi, M., Nozaka, K., Okada, K., Shimada, Y., Itoi, E., Effects of intraarticular administration of basic fibroblast growth factor with hyaluronic acid on osteochondral defects of the knee in rabbits (2005) Arch Orthop Trauma Surg, 125, pp. 683-692; Khalafi, A., Schmid, T.M., Neu, C., Reddi, A.H., Increased accumulation of superficial zone protein (SZP) in articular cartilage in response to bone morphogenetic protein-7 and growth factors (2006) J Orthop Res, 25, pp. 293-303; Hiraide, A., Yokoo, N., Xin, K.Q., Okuda, K., Mizukami, H., Ozawa, K., Repair of articular cartilage defect by intraarticular administration of basic fibroblast growth factor gene, using adeno-associated virus vector (2005) Hum Gene Ther, 16, pp. 1413-1421; Kaul, G., Cucchiarini, M., Arntzen, D., Zurakowski, D., Menger, M.D., Kohn, D., Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo (2006) J Gene Med, 8, pp. 100-111; Henson, F.M., Bowe, E.A., Davies, M.E., Promotion of the intrinsic damage-repair response in articular cartilage by fibroblastic growth factor-2 (2005) Osteoarthritis Cartilage, 13, pp. 537-544; Chuma, H., Mizuta, H., Kudo, S., Takagi, K., Hiraki, Y., One day exposure to FGF-2 was sufficient for the regenerative repair of full-thickness defects of articular cartilage in rabbits (2004) Osteoarthritis Cartilage, 12, pp. 834-842; Yamamoto, T., Wakitani, S., Imoto, K., Hattori, T., Nakaya, H., Saito, M., Fibroblast growth factor-2 promotes the repair of partial thickness defects of articular cartilage in immature rabbits but not in mature rabbits (2004) Osteoarthritis Cartilage, 12, pp. 636-641; Tanaka, H., Mizokami, H., Shiigi, E., Murata, H., Ogasa, H., Mine, T., Effects of basic fibroblast growth factor on the repair of large osteochondral defects of articular cartilage in rabbits: Dose-response effects and long-term outcomes (2004) Tissue Eng, 10, pp. 633-641; Fujimoto, E., Ochi, M., Kato, Y., Mochizuki, Y., Sumen, Y., Ikuta, Y., Beneficial effect of basic fibroblast growth factor on the repair of full-thickness defects in rabbit articular cartilage (1999) Arch Orthop Trauma Surg, 119, pp. 139-145; Veilleux, N., Spector, M., Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro (2005) Osteoarthritis Cartilage, 13, pp. 278-286; Fukuda, A., Kato, K., Hasegawa, M., Hirata, H., Sudo, A., Okazaki, K., Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor (2005) Biomaterials, 26, pp. 4301-4308; Cucchiarini, M., Madry, H., Ma, C., Thurn, T., Zurakowski, D., Menger, M.D., Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2 (2005) Mol Ther, 12, pp. 229-238; Yokoo, N., Saito, T., Uesugi, M., Kobayashi, N., Xin, K.Q., Okuda, K., Repair of articular cartilage defect by autologous transplantation of basic fibroblast growth factor gene-transduced chondrocytes with adeno-associated virus vector (2005) Arthritis Rheum, 52, pp. 164-170; Stevens, M.M., Marini, R.P., Martin, I., Langer, R., Prasad Shastri, V., FGF-2 enhances TGF-beta1-induced periosteal chondrogenesis (2004) J Orthop Res, 22, pp. 1114-1119; de Haart, M., Marijnissen, W.J., van Osch, G.J., Verhaar, J.A., Optimization of chondrocyte expansion in culture: Effect of TGF beta-2, bFGF and L-ascorbic acid on bovine articular chondrocytes (1999) Acta Orthop Scand, 70, pp. 55-61; Molloy, T., Wang, Y., Murrell, G., The roles of growth factors in tendon and ligament healing (2003) Sports Med, 33, pp. 381-394; Tang, J.B., Xu, Y., Ding, F., Wang, X.T., Tendon healing in vitro: Promotion of collagen gene expression by bFGF with NF-kappaB gene activation (2003) J Hand Surg [Am], 28, pp. 215-220; Chan, B.P., Fu, S., Qin, L., Lee, K., Rolf, C.G., Chan, K., Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: A rat patellar tendon model (2000) Acta Orthop Scand, 71, pp. 513-518; Chang, J., Most, D., Thunder, R., Mehrara, B., Longaker, M.T., Lineaweaver, W.C., Molecular studies in flexor tendon wound healing: The role of basic fibroblast growth factor gene expression (1998) J Hand Surg [Am], 23, pp. 1052-1058; Murakami, S., Takayama, S., Kitamura, M., Shimabukuro, Y., Yanagi, K., Ikezawa, K., Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs (2003) J Periodontal Res, 38, pp. 97-103; Murakami, S., Takayama, S., Ikezawa, K., Shimabukuro, Y., Kitamura, M., Nozaki, T., Regeneration of periodontal tissues by basic fibroblast growth factor (1999) J Periodontal Res, 34, pp. 425-430; Lee, J., Harwood, F.L., Akeson, W.H., Amiel, D., Growth factor expression in healing rabbit medial collateral and anterior cruciate ligaments (1998) Iowa Orthop J, 18, pp. 19-25; Fukui, N., Katsuragawa, Y., Sakai, H., Oda, H., Nakamura, K., Effect of local application of basic fibroblast growth factor on ligament healing in rabbits (1998) Rev Rheum Engl Ed, 65, pp. 406-414; Takayama, S., Murakami, S., Miki, Y., Ikezawa, K., Tasaka, S., Terashima, A., Effects of basic fibroblast growth factor on human periodontal ligament cells (1997) J Periodontal Res, 32, pp. 667-675; Letson, A.K., Dahners, L.E., The effect of combinations of growth factors on ligament healing (1994) Clin Orthop Relat Res, pp. 207-212. , November; Wang, X.T., Liu, P.Y., Xin, K.Q., Tang, J.B., Tendon healing in vitro: BFGF gene transfer to tenocytes by adeno-associated viral vectors promotes expression of collagen genes (2005) J Hand Surg [Am], 30, pp. 1255-1261; Hamada, Y., Katoh, S., Hibino, N., Kosaka, H., Hamada, D., Yasui, N., Effects of monofilament nylon coated with basic fibroblast growth factor on endogenous intrasynovial flexor tendon healing (2006) J Hand Surg [Am], 31, pp. 530-540; Lietman, S.A., Hobbs, W., Inoue, N., Reddi, A.H., Effects of selected growth factors on porcine meniscus in chemically defined medium (2003) Orthopedics, 26, pp. 799-803; Tumia, N.S., Johnstone, A.J., Promoting the proliferative and synthetic activity of knee meniscal fibrochondrocytes using basic fibroblast growth factor in vitro (2004) Am J Sports Med, 32, pp. 915-920; Melrose, J., Smith, S., Little, C.B., Kitson, J., Hwa, S.Y., Ghosh, P., Spatial and temporal localization of transforming growth factor-beta, fibroblast growth factor-2, and osteonectin, and identification of cells expressing alpha-smooth muscle actin in the injured anulus fibrosus: Implications for extracellular matrix repair (2002) Spine, 27, pp. 1756-1764; Pattison, S.T., Melrose, J., Ghosh, P., Taylor, T.K., Regulation of gelatinase-A (MMP-2) production by ovine intervertebral disc nucleus pulposus cells grown in alginate bead culture by transforming growth factor-beta(1)and insulin like growth factor-I (2001) Cell Biol Int, 25, pp. 679-689; Blaney Davidson, E.N., Vitters, E.L., van den Berg, W.B., van der Kraan, P.M., TGF beta-induced cartilage repair is maintained but fibrosis is blocked in the presence of Smad7 (2006) Arthritis Res Ther, 8, pp. R65; Blaney Davidson, E.N., Scharstuhl, A., Vitters, E.L., van der Kraan, P.M., van den Berg, W.B., Reduced transforming growth factor-beta signaling in cartilage of old mice: Role in impaired repair capacity (2005) Arthritis Res Ther, 7, pp. R1338-R1347; Grimaud, E., Heymann, D., Redini, F., potential therapeutic roles of TGF-beta in cartilage disorders (2002) Cytokine Growth Factor Rev, 13, pp. 241-257. , Recent advances in TGF-beta effects on chondrocyte metabolism; Holland, T.A., Tessmar, J.K., Tabata, Y., Mikos, A.G., Transforming growth factor-beta 1 release from oligo(poly (ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment (2004) J Control Release, 94, pp. 101-114; Hsieh, P.C., Thanapipatsiri, S., Anderson, P.C., Wang, G.J., Balian, G., Repair of full-thickness cartilage defects in rabbit knees with free periosteal graft preincubated with transforming growth factor (2003) Orthopedics, 26, pp. 393-402; Abe, T., Yamada, H., Nakajima, H., Kikuchi, T., Takaishi, H., Tadakuma, T., Repair of full-thickness cartilage defects using liposomal transforming growth factor-betal (2003) J Orthop Sci, 8, pp. 92-101; Mierisch, C.M., Cohen, S.B., Jordan, L.C., Robertson, P.G., Balian, G., Diduch, D.R., Transforming growth factor-beta in calcium alginate beads for the treatment of articular cartilage defects in the rabbit (2002) Arthroscopy, 18, pp. 892-900; Stove, J., Schneider-Wald, B., Scharf, H.P., Schwarz, M.L., Bone morphogenetic protein 7 (bmp-7) stimulates proteoglycan synthesis in human osteoarthritic chondrocytes in vitro (2006) Biomed Pharmacother, 60, pp. 639-643; Kuo, A.C., Rodrigo, J.J., Reddi, A.H., Curtiss, S., Grotkopp, E., Chin, M., Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair (2006) Osteoarthritis Cartilage, 14, pp. 1126-1135; Cook, S.D., Patron, L.P., Salkeld, S.L., Rueger, D.C., Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs (2003) J Bone Joint Surg Am, 85-A (3), pp. 116-123; Jelic, M., Pecina, M., Haspl, M., Kos, J., Taylor, K., Maticic, D., Regeneration of articular cartilage chondral defects by osteogenic protein-1 (bone morphogenetic protein-7) in sheep (2001) Growth Factors, 19, pp. 101-113; Miyamoto, K., Masuda, K., Kim, J.G., Inoue, N., Akeda, K., Andersson, G.B., Intradiscal injections of osteogenic protein-1 restore the viscoelastic properties of degenerated intervertebral discs (2006) Spine J, 6, pp. 692-703; Zhang, Y., An, H.S., Thonar, E.J., Chubinskaya, S., He, T.C., Phillips, F.M., Comparative effects of bone morphogenetic proteins and sox9 overexpression on extracellular matrix metabolism of bovine nucleus pulposus cells (2006) Spine, 31, pp. 2173-2179; Masuda, K., Imai, Y., Okuma, M., Muehleman, C., Nakagawa, K., Akeda, K., Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model (2006) Spine, 31, pp. 742-754; Kawakami, M., Matsumoto, T., Hashizume, H., Kuribayashi, K., Chubinskaya, S., Yoshida, M., Osteogenic protein-1 (osteogenic protein-1/bone morphogenetic protein-7) inhibits degeneration and pain-related behavior induced by chronically compressed nucleus pulposus in the rat (2005) Spine, 30, pp. 1933-1939; Takegami, K., An, H.S., Kumano, F., Chiba, K., Thonar, E.J., Singh, K., Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis (2005) Spine J, 5, pp. 231-238; An, H.S., Takegami, K., Kamada, H., Nguyen, C.M., Thonar, E.J., Singh, K., Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits (2005) Spine, 30, pp. 25-31; Zhang, Y., An, H.S., Song, S., Toofanfard, M., Masuda, K., Andersson, G.B., Growth factor osteogenic protein-1: Differing effects on cells from three distinct zones in the bovine intervertebral disc (2004) Am J Phys Med Rehabil, 83, pp. 515-521; Takegami, K., Thonar, E.J., An, H.S., Kamada, H., Masuda, K., Osteogenic protein-1 enhances matrix replenishment by intervertebral disc cells previously exposed to interleukin-1 (2002) Spine, 27, pp. 1318-1325; Neuwirth, J., Fuhrmann, R.A., Veit, A., Aurich, M., Stonans, I., Trommer, T., Expression of bioactive bone morphogenetic proteins in the subacromial bursa of patients with chronic degeneration of the rotator cuff (2006) Arthritis Res Ther, 8, pp. R92; Bobacz, K., Ullrich, R., Amoyo, L., Erlacher, L., Smolen, J.S., Graninger, W.B., Stimulatory effects of distinct members of the bone morphogenetic protein family on ligament fibroblasts (2006) Ann Rheum Dis, 65, pp. 169-177; Tsai, A.D., Yeh, L.C., Lee, J.C., Effects of osteogenic protein-1 (OP-1, BMP-7) on gene expression in cultured medial collateral ligament cells (2003) J Cell Biochem, 90, pp. 777-791; Hidaka, C., Goodrich, L.R., Chen, C.T., Warren, R.F., Crystal, R.G., Nixon, A.J., Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7 (2003) J Orthop Res, 21, pp. 573-583; Hidaka, C., Quitoriano, M., Warren, R.F., Crystal, R.G., Enhanced matrix synthesis and in vitro formation of cartilage-like tissue by genetically modified chondrocytes expressing BMP-7 (2001) J Orthop Res, 19, pp. 751-758; Takigawa, M., Tajima, K., Pan, H.O., Enomoto, M., Kinoshita, A., Suzuki, F., Establishment of a clonal human chondrosarcoma cell line with cartilage phenotypes (1989) Cancer Res, 49, pp. 3996-4002; Chansky, H., Robbins, J.R., Cha, S., Raskind, W.H., Conrad, E.U., Sandell, L.J., Expression of cartilage extracellular matrix and potential regulatory genes in a new human chondrosarcoma cell line (1998) J Orthop Res, 16, pp. 521-530; Shukunami, C., Ishizeki, K., Atsumi, T., Ohta, Y., Suzuki, F., Hiraki, Y., Cellular hypertrophy and calcification of embryonal carcinoma-derived chondrogenic cell line ATDC5 in vitro (1997) J Bone Miner Res, 12, pp. 1174-1188; Bernier, S.M., Goltzman, D., Regulation of expression of the chondrocytic phenotype in a skeletal cell line (CFK2) in vitro (1993) J Bone Miner Res, 8, pp. 475-484; Lunstrum, G.P., Keene, D.R., Weksler, N.B., Cho, Y.J., Cornwall, M., Horton, W.A., Chondrocyte differentiation in a rat mesenchymal cell line (1999) J Histochem Cytochem, 47, pp. 1-6; Finger, F., Schorle, C., Zien, A., Gebhard, P., Goldring, M.B., Aigner, T., Molecular phenotyping of human chondrocyte cell lines T/C-28a2, T/ C-28a4, and C-28/I2 (2003) Arthritis Rheum, 48, pp. 3395-3403; Kokenyesi, R., Tan, L., Robbins, J.R., Goldring, M.B., Proteoglycan production by immortalized human chondrocyte cell lines cultured under conditions that promote expression of the differentiated phenotype (2000) Arch Biochem Biophys, 383, pp. 79-90; Robbins, J.R., Thomas, B., Tan, L., Choy, B., Arbiser, J.L., Berenbaum, F., Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1 beta (2000) Arthritis Rheum, 43, pp. 2189-2201; Grigolo, B., Roseti, L., Neri, S., Gobbi, P., Jensen, P., Major, E.O., maintenance of differentiated phenotype under defined culture conditions (2002) Osteoarthritis Cartilage, 10, pp. 879-889. , Human articular chondrocytes immortalized by HPV-16 E6 and E7 genes; Chou, A.I., Bansal, A., Miller, G.J., Nicoll, S.B., The effect of serial monolayer passaging on the collagen expression profile of outer and inner anulus fibrosus cells (2006) Spine, 31, pp. 1875-1881; Gruber, H.E., Hoelscher, G.L., Leslie, K., Ingram, J.A., Hanley Jr, E.N., Three-dimensional culture of human disc cells within agarose or a collagen sponge: Assessment of proteoglycan production (2006) Biomaterials, 27, pp. 371-376; Gruber, H.E., Leslie, K., Ingram, J., Norton, H.J., Hanley, E.N., Cell-based tissue engineering for the intervertebral disc: In vitro studies of human disc cell gene expression and matrix production within selected cell carriers (2004) Spine J, 4, pp. 44-55; Gruber, H.E., Ingram, J.A., Leslie, K., Norton, H.J., Hanley Jr, E.N., Cell shape and gene expression in human intervertebral disc cells: In vitro tissue engineering studies (2003) Biotech Histochem, 78, pp. 109-117; Gruber, H.E., Hanley Jr, E.N., Human disc cells in monolayer vs 3D culture: Cell shape, division and matrix formation (2000) BMC Musculoskelet Disord, 1, p. 1; Goldberg, A.J., Lee, D.A., Bader, D.L., Bentley, G., Autologous chondrocyte implantation. Culture in a TGF-betacontaining medium enhances the re-expression of a chondrocytic phenotype in passaged human chondrocytes in pellet culture (2005) J Bone Joint Surg Br, 87, pp. 128-134; Zhang, Z., McCaffery, J.M., Spencer, R.G., Francomano, C.A., Hyaline cartilage engineered by chondrocytes in pellet culture: Histological, immunohistochemical and ultrastructural analysis in comparison with cartilage explants (2004) J Anat, 205, pp. 229-237; Melrose, J., Roughley, P., Knox, S., Smith, S., Lord, M., Whitelock, J., The structure, location, and function of perlecan, a prominent pericellular proteoglycan of fetal, postnatal, and mature hyaline cartilages (2006) J Biol Chem, 281, pp. 36905-36914; Melrose, J., Smith, S., Cake, M., Read, R., Whitelock, J., Perlecan displays variable spatial and temporal immunolocalisation patterns in the articular and growth plate cartilages of the ovine stifle joint (2005) Histochem Cell Biol, 123, pp. 561-571; Little, C.B., Ghosh, P., Variation in proteoglycan metabolism by articular chondrocytes in different joint regions is determined by post-natal mechanical loading (1997) Osteoarthritis Cartilage, 5, pp. 49-62; Hayes, A.J., Hall, A., Brown, L., Tubo, R., Caterson, B., Macro-molecular organization and in vitro growth characteristics of scaffold-free neocartilage grafts (2007) Histochem Cytochem, 55, pp. 853-866; Murdoch, A., Grady, L.M., Ablett, M.P., Katopodi, T., Meadows, R.S., Hardingharn, T.E., Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: Generation of scaffold free cartilage (2007) Stem Cells, 25, pp. 2786-2796; Brittberg, M., Autologous chondrocyte transplantation (1999) Clin Orthop Relat Res, pp. S147-S155. , October; Peterson, L., Minas, T., Brittberg, M., Nilsson, A., Sjogren-Jansson, E., Lindahl, A., Two- to 9-year outcome after autologous chondrocyte transplantation of the knee (2000) Clin Orthop Relat Res, pp. 212-234. , May; Brittberg, M., Tallheden, T., Sjogren-Jansson, B., Lindahl, A., Peterson, L., Autologous chondrocytes used for articular cartilage repair: An update (2001) Clin Orthop Relat Res, pp. S337-S348. , October; De Bie, C., Genzyme, 15 years of cell and gene therapy research (2007) Regen Med, 2, pp. 95-97; Minas, T., Autologous chondrocyte implantation for focal chondral defects of the knee (2001) Clin Orthop Relat Res, pp. S349-S361. , October; Minas, T., Bryant, T., The role of autologous chondrocyte implantation in the patellofemoral joint (2005) Clin Orthop Relat Res, pp. 30-39. , July; Micheli, L.J., Browne, J.E., Erggelet, C., Fu, F., Mandelbaum, B., Moseley, J.B., Autologous chondrocyte implantation of the knee: Multicenter experience and minimum 3-year follow-up (2001) Clin J Sport Med, 11, pp. 223-228; Wood, J.J., Malek, M.A., Frassica, F.J., Polder, J.A., Mohan, A.K., Bloom, E.T., Autologous cultured chondrocytes: Adverse events reported to the United States Food and Drug Administration (2006) J Bone Joint Surg Am, 88, pp. 503-507; Browne, J.E., Anderson, A.F., Arciero, R., Mandelbaum, B., Moseley Jr, J.B., Micheli, L.J., Clinical outcome of autologous chondrocyte implantation at 5 years in US subjects (2005) Clin Orthop Relat Res, pp. 237-245. , July; Mandelbaum, B., Browne, J.E., Fu, F., Micheli, L.J., Moseley Jr, J.B., Erggelet, C., Treatment outcomes of autologous chondrocyte implantation for full-thickness articular cartilage defects of the trochlea (2007) Am J Sports Med, 35, pp. 915-921; Cherubino, P., Grassi, F.A., Bulgheroni, P., Ronga, M., Autologous chondrocyte implantation using a bilayer collagen membrane: A preliminary report (2003) J Orthop Surg (Hong Kong), 11, pp. 10-15; Guilak, F., Butler, D.L., Goldstein, S.A., Functional tissue engineering: The role of biomechanics in articular cartilage repair (2001) Clin Orthop Relat Res, pp. S295-S305. , October; Borenstein, J.T., Weinberg, E.J., Orrick, B.K., Sundback, C., Kaazempur-Mofrad, M.R., Vacanti, J.P., Microfabrication of three-dimensional engineered scaffolds (2007) Tissue Eng, 13, pp. 1837-1844; Chang, S.C., Rowley, J.A., Tobias, G., Genes, N.G., Roy, A.K., Mooney, D.J., Injection molding of chondrocyte/alginate constructs in the shape of facial implants (2001) J Biomed Mater Res, 55, pp. 503-511; Chang, S.C., Liao, Y.F., Hung, L.M., Tseng, C.S., Hsu, J.H., Chen, J.K., Prefabricated implants or grafts with reverse models of three-dimensional mirror-image templates for reconstruction of craniofacial abnormalities (1999) Plast Reconstr Surg, 104, pp. 1413-1418; Kamil, S.H., Vacanti, M.P., Aminuddin, B.S., Jackson, M.J., Vacanti, C.A., Eavey, R.D., Tissue engineering of a human sized and shaped auricle using a mold (2004) Laryngoscope, 114, pp. 867-870; Kamil, S.H., Kojima, K., Vacanti, M.P., Bonassar, L.J., Vacand, C.A., Eavey, R.D., In vitro tissue engineering to generate a human-sized auricle and nasal tip (2003) Laryngoscope, 113, pp. 90-94; Mizuno, H., Roy, A.K., Vacanti, C.A., Kojima, K., Ueda, M., Bonassar, L.J., Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement (2004) Spine, 29, pp. 1290-1297; Mizuno, H., Roy, A.K., Zaporojan, V., Vacand, C.A., Ueda, M., Bonassar, L.J., Biomechanical and biochemical characterization of composite tissue-engineered intervertebral discs (2006) Biomaterials, 27, pp. 362-370; Yang, L., Korom, S., Welti, M., Hoerstrup, S.P., Zund, G., Jung, F.J., Tissue engineered cartilage generated from human trachea using DegraPol scaffold (2003) Eur J Cardiothorac Surg, 24, pp. 201-207; Saad, B., Moro, M., Tun-Kyi, A., Welti, M., Schmutz, P., Uhlschmid, G.K., Chondrocyte-biocompatibility of DegraPol-foam: In vitro evaluations (1999) J Biomater Sci Polym Ed, 10, pp. 1107-1119; Hoben, G.M., Athanasiou, K.A., Meniscal repair with fibrocartilage engineering (2006) Sports Med Arthrosc, 14, pp. 129-137; Kang, S.W., Son, S.M., Lee, J.S., Lee, E.S., Lee, K.Y., Park, S.G., Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model (2006) J Biomed Mater Res A, 78, pp. 659-671; Doroski, D.M., Brink, K.S., Temenoff, J.S., Techniques for biological characterization of tissue-engineered tendon and ligament (2007) Biomaterials, 28, pp. 187-202; Hairfield-Stein, M., England, C., Paek, H.J., Gilbraith, K.B., Dennis, R., Boland, E., Development of self-assembled, tissue-engineered ligament from bone marrow stromal cells (2007) Tissue Eng, 13, pp. 703-710; Hankemeier, S., van Griensven, M., Ezechieli, M., Barkhausen, T., Austin, M., Jagodzinski, M., Tissue engineering of tendons and ligaments by human bone marrow stromal cells in a liquid fibrin matrix in immunodeficient rats: Results of a histologic study (2007) Arch Orthop Trauma Surg, 127, pp. 815-821; Hoffmann, A., Gross, G., Tendon and ligament engineering: From cell biology to in vivo application (2006) Regen Med, 1, pp. 563-574; Noth, U., Schupp, K., Heymer, A., Kall, S., Jakob, F., Schutze, N., Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel (2005) Cytotherapy, 7, pp. 447-455; Sahoo, S., Ouyang, H., Goh, J.C., Tay, T.E., Toh, S.L., Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering (2006) Tissue Eng, 12, pp. 91-99; Goh, J.C., Ouyang, H.W., Teoh, S.H., Chan, C.K., Lee, E.H., Tissue-engineering approach to the repair and regeneration of tendons and ligaments (2003) Tissue Eng, 9, pp. S31-S44; Shao, X., Hunter, C.J., Developing an alginate/chitosan hybrid fiber scaffold for annulus fibrosus cells (2007) J Biomed Mater Res A, 82, pp. 701-710; Mwale, F., Iordanova, M., Demers, C.N., Steffen, T., Roughley, P., Antoniou, J., Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering (2005) Tissue Eng, 11, pp. 130-140; Seguin, C.A., Grynpas, M.D., Pilliar, R.M., Waldman, S.D., Kandel, R.A., Tissue engineered nucleus pulposus tissue formed on a porous calcium polyphosphate substrate (2004) Spine, 29, pp. 1299-1306; Alini, M., Li, W., Markovic, P., Aebi, M., Spiro, R.C., Roughley, P.J., The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix (2003) Spine, 28, pp. 446-454; Vernengo, J., Fussell, G.W., Smith, N.G., Lowman, A.M., Evaluation of novel injectable hydrogels for nucleus pulposus replacement (2008) J Biomed Mater Res B Appl Biomater, 84, pp. 64-69; Revell, P.A., Damien, E., Di Silvio, L., Gurav, N., Longinotti, C., Ambrosio, L., Tissue engineered intervertebral disc repair in the pig using injectable polymers (2007) J Mater Sci Mater Med, 18, pp. 303-308; Wilda, H., Gough, J.E., In vitro studies of annulus fibrosus disc cell attachment, differentiation and matrix production on PDLLA/45S5 Bioglass composite films (2006) Biomaterials, 27, pp. 5220-5229; Helen, W., Merry, C.L., Blaker, J.J., Gough, J.E., assessment of cell attachment, proliferation and extracellular matrix production (2007) Biomaterials, 28, pp. 2010-2020. , Three-dimensional culture of annulus fibrosus cells within PDLLA/Bioglass composite foam scaffolds; Sato, M., Asazuma, T., Ishihara, M., Kikuchi, T., Masuoka, K., Ichimura, S., An atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS-scaffold) for the culture of annulus fibrosus cells from an intervertebral disc (2003) J Biomed Mater Res A, 64, pp. 248-256; Johnson, W.E., Wootton, A., El Haj, A., Eisenstein, S.M., Curtis, A.S., Roberts, S., Topographical guidance of intervertebral disc cell growth in vitro: Towards the development of tissue repair strategies for the anulus fibrosus (2006) Eur Spine J, 15, pp. S389-S396; Nerurkar, N.L., Elliott, D.M., Mauck, R.L., Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering (2007) J Orthop Res, 25, pp. 1018-1028; Chang, G., Kim, H.J., Kaplan, D., Vunjak-Novakovic, G., Kandel, R.A., Porous silk scaffolds can be used for tissue engineering annulus fibrosus (2007) Eur Spine J, 16, pp. 1848-1857; Figallo, E., Flaibani, M., Zavan, B., Abatangelo, G., Elvassore, N., Micropatterned biopolymer 3D scaffold for static and dynamic culture of human fibroblasts (2007) Biotechnol Prog, 23, pp. 210-216; Gokorsch, S., Weber, C., Wedler, T., Czermak, P., A stimulation unit for the application of mechanical strain on tissue engineered anulus fibrosus cells: A new system to induce extracellular matrix synthesis by anulus fibrosus cells dependent on cyclic mechanical strain (2005) Int J Artif Organs, 28, pp. 1242-1250; Grad, S., Gogolewski, S., Alini, M., Wimmer, M.A., Effects of simple and complex motion patterns on gene expression of chondrocytes seeded in 3D scaffolds (2006) Tissue Eng, 12, pp. 3171-3179; Crescenzi, V., Cornelio, L., Meo, C.D., Nardecchia, S., Lamanna, R., Novel hydrogels via click chemistry: Synthesis and potential biomedical applications (2007) Biomacromolecules, 8, pp. 1844-1850; Allison, D.D., Grande-Allen, K.J., Review. Hyaluronan: A powerful tissue engineering tool (2006) Tissue Eng, 12, pp. 2131-2140; Pal, K., Banthia, A.K., Majumdar, D.K., Hydrogels for biomedical applications: A short review (2007) J Mater Sci Mater Med, , in press; Lee, K.Y., Mooney, D.J., Hydrogels for tissue engineering (2001) Chem Rev, 101, pp. 1869-1879; Gobbi, A., Kon, E., Berruto, M., Francisco, R., Filardo, G., Mareacci, M., Patellofemoral full-thickness chondral defects treated with Hyalograft-C: A clinical, arthroscopic, and histologic review (2006) Am J Sports Med, 34, pp. 1763-1773; Podskubka, A., Povysil, C., Kubes, R., Sprindrich, J., Sedlacek, R., Treatment of deep cartilage defects of the knee with autologous chondrocyte transplantation on a hyaluronic Acid ester scaffolds (Hyalograft C)] (2006) Acta Chir Orthop Traumatol Cech, 73, pp. 251-263; Tognana, E., Borrione, A., De Luca, C., Pavesio, A., Hyalograft® C: Hyaluronan-based scaffolds in tissue-engineered cartilage (2007) Cells Tissues Organs, 186, pp. 97-103; Liao, E., Yaszemski, M., Krebsbach, P., Hollister, S., Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds (2007) Tissue Eng, 13, pp. 537-550; Tang, S., Vickers, S.M., Hsu, H.P., Spector, M., Fabrication and characterization of porous hyaluronic acid-collagen composite scaffolds (2007) J Biomed Mater Res A, 82, pp. 323-335; Lee, S.J., Kim, S.Y., Lee, Y.M., Preparation of porous collagen/hyaluronic acid hybrid scaffolds for biomimetic functionalization through biochemical binding affinity (2007) J Biomed Mater Res B Appl Biomater, 82, pp. 506-518; Tan, H., Gong, Y., Lao, L., Mao, Z., Gao, C., Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering (2007) J Mater Sci Mater Med, 18, pp. 1961-1968; Deng, T., Huang, S., Zhou, S., He, L., Jin, Y., Cartilage regeneration using a novel gelatin-chondroitin-hyaluronan hybrid scaffold containing bFGF-impregnated microspheres (2007) J Microencapsul, 24, pp. 163-174; Wang, W., A novel hydrogel crosslinked hyaluronan with glycol chitosan (2006) J Mater Sci Mater Med, 17, pp. 1259-1265; Mercier, N.R., Costantino, H.R., Tracy, M.A., Bonassar, L.J., Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering (2005) Biomaterials, 26, pp. 1945-1952; Kang, S.W., Jeon, O., Kim, B.S., Poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering (2005) Tissue Eng, 11, pp. 438-447; Mercier, N.R., Costantino, H.R., Tracy, M.A., Bonassar, L.J., A novel injectable approach for cartilage formation in vivo using PLG microspheres (2004) Ann Biomed Eng, 32, pp. 418-429; Chen, G., Sato, T., Ushida, T., Hirochika, R., Shirasaki, Y., Ochiai, N., The use of a novel PLGA fiber/collagen composite web as a scaffold for engineering of articular cartilage tissue with adjustable thickness (2003) J Biomed Mater Res A, 67, pp. 1170-1180; Cohen, S.B., Meirisch, C.M., Wilson, H.A., Diduch, D.R., The use of absorbable co-polymer pads with alginate and cells for articular cartilage repair in rabbits (2003) Biomaterials, 24, pp. 2653-2660; Stammen, J.A., Williams, S., Ku, D.N., Guldberg, R.E., Mechanical properties of a novel PVA hydrogel in shear and unconfined compression (2001) Biomaterials, 22, pp. 799-806; Temenoff, J.S., Mikos, A.G., Review: Tissue engineering for regeneration of articular cartilage (2000) Biomaterials, 21, pp. 431-440; Coviello, T., Matricardi, P., Marianecci, C., Alhaique, F., Polysaccharide hydrogels for modified release formulations (2007) J Control Release, 119, pp. 5-24; Vercruysse, K.P., Marecak, D.M., Marecek, J.F., Prestwich, G.D., Synthesis and in vitro degradation of new polyvalent hydrazide cross-linked hydrogels of hyaluronic acid (1997) Bioconjug Chem, 8, pp. 686-694; Prestwich, G.D., Marecak, D.M., Marecek, J.F., Vercruysse, K.P., Ziebell, M.R., Controlled chemical modification of hyaluronic acid: Synthesis, applications, and biodegradation of hydrazide derivatives (1998) J Control Release, 53, pp. 93-103; Peattie, R.A., Nayate, A.P., Firpo, M.A., Shelby, J., Fisher, R.J., Prestwich, G.D., Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants (2004) Biomaterials, 25, pp. 2789-2798; Peattie, R.A., Rieke, E.R., Hewett, E.M., Fisher, R.J., Shu, X.Z., Prestwich, G.D., Dual growth factor-induced angiogenesis in vivo using hyaluronan hydrogel implants (2006) Biomaterials, 27, pp. 1868-1875; Radomsky, M.L., Thompson, A.Y., Spiro, R.C., Poser, J.W., Potential role of fibroblast growth factor in enhancement of fracture healing (1998) Clin Orthop Relat Res, pp. S283-S293. , October; Kim, H.D., Valentini, R.F., Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro (2002) J Biomed Mater Res, 59, pp. 573-584; Cai, S., Liu, Y., Zheng Shu, X., Prestwich, G.D., Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor (2005) Biomaterials, 26, pp. 6054-6067; Prestwich, G.D., Shu, X.Z., Liu, Y., Cai, S., Walsh, J.F., Hughes, C.W., Injectable synthetic extracellular matrices for tissue engineering and repair (2006) Adv Exp Med Biol, 585, pp. 125-133; Kim, I.Y., Seo, S.J., Moon, H.S., Yoo, M.K., Park, I.Y., Kim, B.C., Chitosan and its derivatives for tissue engineering applications (2007) Biotechnol Adv, 26, pp. 1-21; Guo, C.A., Liu, X.G., Huo, J.Z., Jiang, C., Wen, X.J., Chen, Z.R., Novel gene-modified-tissue engineering of cartilage using stable transforming growth factor-beta1-transfected mesenchymal stem cells grown on chitosan scaffolds (2007) J Biosci Bioeng, 103, pp. 547-556; Jancar, J., Slovikova, A., Amler, E., Krupa, P., Kecova, H., Planka, L., Mechanical response of porous scaffolds for cartilage engineering (2007) Physiol Res, , in press; Hoemann, C.D., Hurtig, M., Rossomacha, E., Sun, J., Chevrier, A., Shive, M.S., Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects (2005) J Bone Joint Surg Am, 87, pp. 2671-2686; Shi, D.H., Cai, D.Z., Zhou, C.R., Rong, L.M., Wang, K., Xu, Y.C., Development and potential of a biomimetic chitosan/type II collagen scaffold for cartilage tissue engineering (2005) Chin Med J (Engl), 118, pp. 1436-1443; Subramanian, A., Vu, D., Larsen, G.F., Lin, H.Y., Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering (2005) J Biomater Sci Polym Ed, 16, pp. 861-873; Frenkel, S.R., Bradica, G., Brekke, J.H., Goldman, S.M., Ieska, K., Issack, P., Regeneration of articular cartilage: Evaluation of osteochondral defect repair in the rabbit using multiphasic implants (2005) Osteoarthritis Cartilage, 13, pp. 798-807; Hoemann, C.D., Sun, J., Legare, A., McKee, M.D., Buschmann, M.D., Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle (2005) Osteoarthritis Cartilage, 13, pp. 318-329; Hsu, S.H., Whu, S.W., Hsieh, S.C., Tsai, C.L., Chen, D.C., Tan, T.S., Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration (2004) Artif Organs, 28, pp. 693-703; Subramanian, A., Lin, H.Y., Vu, D., Larsen, G., Synthesis and evaluation of scaffolds prepared from chitosan fibers for potential use in cartilage tissue engineering (2004) Biomed Sci Instrum, 40, pp. 117-122; Moroni, L., de Wijn, J.R., van Blitterswijk, C.A., Three-dimensional fiber-deposited PEOT/PBT copolymer scaffolds for tissue engineering: Influence of porosity, molecular network mesh size, and swelling in aqueous media on dynamic mechanical properties (2005) J Biomed Mater Res A, 75, pp. 957-965; Moroni, L., Licht, R., de Boer, J., de Wijn, J.R., van Blitterswijk, C.A., Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds (2006) Biomaterials, 27, pp. 4911-4922; Kellomaki, M., Paasimaa, S., Grijpma, D.W., Kolppo, K., Tormala, P., In vitro degradation of Polyactive 1000PEOT70 PBT30 devices (2002) Biomaterials, 23, pp. 283-295; Moroni, L., Hendriks, J.A., Schotel, R., de Wijn, J.R., van Blitterswijk, C.A., Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications (2007) Tissue Eng, 13, pp. 361-371; Deschamps, A.A., Claase, M.B., Sleijster, W.J., de Bruijn, J.D., Grijpma, D.W., Feijen, J., Design of segmented poly(ether ester) materials and structures for the tissue engineering of bone (2002) J Control Release, 78, pp. 175-186; Gonen-Wadmany, M., Oss-Ronen, L., Seliktar, D., Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering (2007) Biomaterials, 28, pp. 3876-3886; Buxton, A.N., Zhu, J., Marchant, R., West, J.L., Yoo, J.U., Johnstone, B., Design and Characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells (2007) Tissue Eng, 13, pp. 2549-2560; Ginty, P.J., Barry, J.J., White, L.J., Howdle, S.M., Shakesheff, K.M., Controlling protein release from scaffolds using polymer blends and composites (2008) Eur J Pharm Biopharm, 68, pp. 82-89; Tessmar, J.K., Gopferich, A.M., Customized PEG-derived copolymers for tissue-engineering applications (2007) Macromol Biosci, 7, pp. 23-39; Shah, N.M., Pool, M.D., Metters, A.T., Influence of network structure on the degradation of photo-cross-linked PLA-b-PEG-b-PLA hydrogels (2006) Biomacromolecules, 7, pp. 3171-3177; Isogai, N., Morotomi, T., Hayakawa, S., Munakata, H., Tabata, Y., Ikada, Y., Combined chondrocyte-copolymer implantation with slow release of basic fibroblast growth factor for tissue engineering an auricular cartilage construct (2005) J Biomed Mater Res A, 74, pp. 408-418; Liu, Y., Cai, S., Shu, X.Z., Shelby, J., Prestwich, G.D., Release of basic fibroblast growth factor from a crosslinked glycosaminoglycan hydrogel promotes wound healing (2007) Wound Repair Regen, 15, pp. 245-251; Silverman, R.P., Bonasser, L., Passaretti, D., Randolph, M.A., Yaremchuk, M.J., Adhesion of tissue-engineered cartilage to native cartilage (2000) Plast Reconstr Surg, 105, pp. 1393-1398; Mikos, A.G., Herring, S.W., Ochareon, P., Elisseeff, J., Lu, H.H., Kandel, R., Engineering complex tissues (2006) Tissue Eng, 12, pp. 3307-3339; Spalazzi, J.P., Doty, S.B., Moffat, K.L., Levine, W.N., Lu, H.H., Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering (2006) Tissue Eng, 12, pp. 3497-3508; Fotiadis, C., Leventis, I., Adamis, S., Gorgoulis, V., Domeyer, P., Zografos, G., The use of isobutylcyanoacrylate as a tissue adhesive in abdominal surgery (2005) Acta Chir Belg, 105, pp. 392-396; Nitsch, A., Pabyk, A., Honig, J.F., Verheggen, R., Merten, H.A., Cellular, histomorphologic, and clinical characteristics of a new octyl-2-cyanoacrylate skin adhesive (2005) Aesthetic Plast Surg, 29, pp. 53-58; Setlik, D.E., Seldomridge, D.L., Adelman, R.A., Semchyshyn, T.M., Afshari, N.A., The effectiveness of isobutyl cyanoacrylate tissue adhesive for the treatment of corneal perforations (2005) Am J Ophthalmol, 140, pp. 920-921; Inal, S., Yilmaz, N., Nisbet, C., Guvenc, T., Biochemical and histopathological findings of N-butyl-2-cyanoacrylate in oral surgery: An experimental study (2006) Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 102, pp. e14-e17; Jayaraman, M.V., Do, H.M., Marks, M.P., Treatment of traumatic cervical arteriovenous fistulas with N-butyl-2-cyanoacrylate (2007) Am J Neuroradiol, 28, pp. 352-354; Cagirici, U., Cetin, Y., Cakan, A., Samancilar, O., Veral, A., Askar, F.Z., Experimental use of N-butyl cyanoacrylate tissue adhesive on lung parenchyma after pulmonary resection (2007) Thorac Cardiovasc Surg, 55, pp. 180-181; Wieken, K., Angioi-Duprez, K., Lim, A., Marchal, L., Merle, M., Nerve anastomosis with glue: Comparative histologic study of fibrin and cyanoacrylate glue (2003) J Reconstr Microsurg, 19, pp. 17-20; Hewitt, C.W., Marra, S.W., Kann, B.R., Tran, H.S., Puc, M.M., Chrzanowski Jr, F.A., BioGlue surgical adhesive for thoracic aortic repair during coagulopathy: Efficacy and histopathology (2001) Ann Thorac Surg, 71, pp. 1609-1612; Mourougayan, V., Sutureless skin closure for cleft lip repair (2006) Cleft Palate Craniofac J, 43, pp. 656-658; Vishwanathan, H., Hamilton, D.W., Ibrahim, E., Youssef, H., Pahor, A.L., Superglue in otology (2007) Surgeon, 5, pp. 10-12; Ayan, I., Colak, M., Comelekoglu, U., Milcan, A., Ogenler, O., Oztuna, V., Histoacryl glue in meniscal repairs (a biomechanical study) (2007) Int Orthop, 31, pp. 241-246; Ishimura, M., Ohgushi, H., Habata, T., Tamai, S., Fujisawa, Y., Arthroscopic meniscal repair using fibrin glue. Part I. Experimental study (1997) Arthroscopy, 13, pp. 551-557; Yilmaz, C., Kuyurtar, F., Fixation of a talar osteochondral fracture with cyanoacrylate glue (2005) Arthroscopy, 21, p. 1009; Ninan, L., Stroshine, R.L., Wilker, J.J., Shi, R., Adhesive strength and curing rate of marine mussel protein extracts on porcine small intestinal submucosa (2007) Acta Biomater, 3, pp. 687-694; Tatehata, H., Mochizuki, A., Ohkawa, K., Yamada, M., Yamamoto, H., Tissue adhesives using synthetic model adhesive proteins inspired by the marine mussel (2001) J Adhes Sci Technol, 15, pp. 1003-1013; Graham, L.D., Glattauer, V., Huson, M.G., Maxwell, J.M., Knott, R.B., White, J.W., Characterization of a protein-based adhesive elastomer secreted by the Australian frog Notaden bennetti (2005) Biomacromolecules, 6, pp. 3300-3312; Graham LD, Glattauer V, Peng YY, Vaughan PR, Werkmeister JA, Tyler MT, et al, An adhesive secreted by Australian frogs of the genus Notaden, in Biological Adhesives, ed by Smith AM, Callow JA. Springer, Berlin, pp. 207-233 (2006)Sakai, D., Mochida, J., Iwashina, T., Hiyama, A., Omi, H., Imai, M., Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc (2006) Biomaterials, 27, pp. 335-345; Gruber, H.E., Fisher Jr, E.C., Desai, B., Stasky, A.A., Hoelscher, G., Hanley Jr, E.N., Human intervertebral disc cells from the annulus: Three-dimensional culture in agarose or alginate and responsiveness to TGF-beta1 (1997) Exp Cell Res, 235, pp. 13-21; Mierisch, C.M., Wilson, H.A., Turner, M.A., Milbrandt, T.A., Berthoux, L., Hammarskjold, M.I., Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: The fate of the cells (2003) J Bone Joint Surg Am, 85-A, pp. 1757-1767; Diduch, D.R., Jordan, L.C., Mierisch, C.M., Balian, G., Marrow stromal cells embedded in alginate for repair of osteochondral defects (2000) Arthroscopy, 16, pp. 571-577; Marijnissen, W.J., van Osch, G.J., Aigner, J., Verwoerd-Verhoef, H.L., Verhaar, J.A., Tissue-engineered cartilage using serially passaged articular chondrocytes: Chondrocytes in alginate, combined in vivo with a synthetic (E210) or biologic biodegradable carrier (DBM) (2000) Biomaterials, 21, pp. 571-580; Almqvist, K.F., Wang, L., Wang, J., Baeten, D., Cornelissen, M., Verdonk, R., Culture of chondrocytes in alginate surrounded by fibrin gel: Characteristics of the cells over a period of eight weeks (2001) Ann Rheum Dis, 60, pp. 781-790; Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D.L., Brittberg, M., Bacterial cellulose as a potential scaffold for tissue engineering of cartilage (2005) Biomaterials, 26, pp. 419-431; Cristino, S., Grassi, F., Toneguzzi, S., Piacentini, A., Grigolo, B., Sand, S., Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11-based prototype ligament scaffold (2005) J Biomed Mater Res A, 73, pp. 275-283; Lisignoli, G., Toneguzzi, S., Zini, N., Piacentini, A., Cristino, S., Tschon, M., Hyaluronan-based biomaterial (Hyaff-11) as scaffold to support mineralization of bone marrow stromal cells (2003) Chir Organi Mov, 88, pp. 363-367; Turner, N.J., Kielty, C.M., Walker, M.G., Canfield, A.E., A novel hyaluronan-based biomaterial (Hyaff-11) as a scaffold for endothelial cells in tissue engineered vascular grafts (2004) Biomaterials, 25, pp. 5955-5964; Caravaggi, C., De Giglio, R., Pritelli, C., Sommaria, M., Dalla Noce, S., Faglia, E., HYAFF 11-based autologous dermal and epidermal grafts in the treatment of noninfected diabetic plantar and dorsal foot ulcers: A prospective, multicenter, controlled, randomized clinical trial (2003) Diabetes Care, 26, pp. 2853-2859; Grigolo, B., Lisignoli, G., Piacentini, A., Fiorini, M., Gobbi, P., Mazzotti, G., Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAff 11): Molecular, immunohistochemical and ultra-structural analysis (2002) Biomaterials, 23, pp. 1187-1195; Grigolo, B., Roseti, L., Fiorini, M., Fini, M., Giavaresi, G., Aldini, N.N., Transplantation of chondrocytes seeded on a hyaluronan derivative (hyaff-11) into cartilage defects in rabbits (2001) Biomaterials, 22, pp. 2417-2424; Italiano, G., Abatangelo Jr, G., Calabro, A., Abatangelo Sr, G., Zanoni, R., O'Regan, M., Reconstructive surgery of the urethra: A pilot study in the rabbit on the use of hyaluronan benzyl ester (Hyaff-11) biodegradable grafts (1997) Urol Res, 25, pp. 137-142; Pitarresi, G., Pierro, P., Palumbo, F.S., Tripodo, G., Giammona, G., Photo-cross-linked hydrogels with polysaccharide-poly(amino acid) structure: New biomaterials for pharmaceutical applications (2006) Biomacromolecules, 7, pp. 1302-1310; Hahn, S.K., Park, J.K., Tomimatsu, T., Shimoboji, T., Synthesis and degradation test of hyaluronic acid hydrogels (2007) Int J Biol Macromol, 40, pp. 374-380; Burdick, J.A., Chung, C., Jia, X., Randolph, M.A., Langer, R., Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks (2005) Biomacromolecules, 6, pp. 386-391; Yoo, H.S., Lee, E.A., Yoon, J.J., Park, T.G., Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering (2005) Biomaterials, 26, pp. 1925-1933; Pitarresi, G., Craparo, E.F., Palumbo, F.S., Carlisi, B., Giammona, G., Composite nanoparticles based on hyaluronic acid chemically cross-linked with alpha,beta-polyaspartyl-hydrazide (2007) Biomacromolecules, 8, pp. 1890-1898; Brandt, F.S., Cazzaniga, A., Hyaluronic acid fillers: Restylane and Perlane (2007) Facial Plast Surg Clin North Am, 15, pp. 63-76; Wang, F., Garza, L.A., Kang, S., Varani, J., Orringer, J.S., Fisher, G.J., In vivo stimulation of de novo collagen production caused by cross-linked hyaluronic acid dermal filler injections in photodamaged human skin (2007) Arch Dermatol, 143, pp. 155-163; Alessandrini, A., Di Bartolo, C., Pavesio, A., Pressato, D., a new hyaluronic acid-based injectable for facial rejuvenation: Preclinical data in a rabbit model (2006) Plast Reconstr Surg, 118, pp. 341-346. , ACP gel; Coleman, S.R., Cross-linked hyaluronic acid fillers (2006) Plast Reconstr Surg, 117, pp. 661-665; Young, J.J., Cheng, K.M., Tsou, T.L., Liu, H.W., Wang, H.J., Preparation of cross-linked hyaluronic acid film using 2-chloro-1-methylpyridinium iodide or water-soluble 1-ethyl-(3, 3-dimethylaminopropyl)carbodiimide (2004) J Biomater Sci Polym Ed, 15, pp. 767-780; Yamane, S., Iwasaki, N., Kasahara, Y., Harada, K., Majima, T., Monde, K., Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers (2007) J Biomed Mater Res A, 81, pp. 586-593; Kobayashi, M., A study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus in vivo (2004) Biomed Mater Eng, 14, pp. 505-515; Kobayashi, M., Chang, Y.S., Oka, M., A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus (2005) Biomaterials, 26, pp. 3243-3248; Mohan, N., Nair, P.D., Polyvinyl alcohol-poly(caprolactone) semi IPN scaffold with implication for cartilage tissue engineering (2007) J Biomed Mater Res B Appl Biomater, , in press; Cao, Y., Rodriguez, A., Vacanti, M., Ibarra, C., Arevalo, C., Vacanti, C.A., Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage (1998) J Biomater Sci Polym Ed, 9, pp. 475-487; Saad, B., Kuboki, Y., Welti, M., Uhlschmid, G.K., Neuenschwander, P., Suter, U.W., DegraPol-foam: A degradable and highly porous polyesterurethane foam as a new substrate for bone formation (2000) Artif Organs, 24, pp. 939-945; Shim, C.S., Lee, S.H., Shin, H.D., Kang, H.S., Choi, W.C., Jung, B., CHARITE versus ProDisc: A comparative study of a minimum 3-year follow-up (2007) Spine, 32, pp. 1012-1018; Yang, X.B., Whitaker, M.J., Sebald, W., Clarke, N., Howdle, S.M., Shakesheff, K.M., Human osteoprogenitor bone formation using encapsulated bone morphogenetic protein 2 in porous polymer scaffolds (2004) Tissue Eng, 10, pp. 1037-1045; Louwerse, R.T., Heyligers, I.C., Klein-Nulend, J., Sugihara, S., van Kampen, G.P., Semeins, C.M., Use of recombinant human osteogenic protein-1 for the repair of subchondral defects in articular cartilage in goats (2000) J Biomed Mater Res, 49, pp. 506-516; Kaps, C., Bramlage, C., Smolian, H., Haisch, A., Ungethum, U., Burmester, G.R., Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction (2002) Arthritis Rheum, 46, pp. 149-162; Fortier, L.A., Mohammed, H.O., Lust, G., Nixon, A.J., Insulin-like growth factor-I enhances cell-based repair of articular cartilage (2002) J Bone Joint Surg Br, 84, pp. 276-288; Fortier, L.A., Nixon, A.J., Lust, G., Phenotypic expression of equine articular chondrocytes grown in three-dimensional cultures supplemented with supraphysiologic concentrations of insulin-like growth factor-1 (2002) Am J Vet Res, 63, pp. 301-305; Nixon, A.J., Fortier, L.A., Williams, J., Mohammed, H., Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites (1999) J Orthop Res, 17, pp. 475-487; Hunziker, E.B., Rosenberg, L.C., Repair of partial-thickness defects in articular cartilage: Cell recruitment from the synovial membrane (1996) J Bone Joint Surg Am, 78, pp. 721-733; Elisseeff, J., McIntosh, W., Fu, K., Blunk, B.T., Langer, R., Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering (2001) J Orthop Res, 19, pp. 1098-1104; Holland, T.A., Tabata, Y., Mikos, A.G., Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering (2005) J Control Release, 101, pp. 111-125; Holland, T.A., Tabata, Y., Mikos, A.G., In vitro release of transforming growth factor-beta 1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels (2003) J Control Release, 91, pp. 299-313; Holland, T.A., Bodde, E.W., Cuijpers, V.M., Baggett, L.S., Tabata, Y., Mikos, A.G., Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair (2007) Osteoarthritis Cartilage, 15, pp. 187-197; Holland, T.A., Bodde, E.W., Baggett, L.S., Tabata, Y., Mikos, A.G., Jansen, J.A., Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds (2005) J Biomed Mater Res A, 75, pp. 156-167; Huang, Q., Goh, J.C., Hutmacher, D.W., Lee, E.H., In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor beta 1 and the potential for in situ chondrogenesis (2002) Tissue Eng, 8, pp. 469-482; DeFail, A.J., Chu, C.R., Izzo, N., Marra, K.G., Controlled release of bioactive TGF-beta 1 from microspheres embedded within biodegradable hydrogels (2006) Biomaterials, 27, pp. 1579-1585; Park, H., Temenoff, J.S., Holland, T.A., Tabata, Y., Mikos, A.G., Delivery of TGF-betal and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications (2005) Biomaterials, 26, pp. 7095-7103; Na, K., Park, J.H., Kim, S.W., Sun, B.K., Woo, D.G., Chung, H.M., Delivery of dexamethasone, ascorbate, and growth factor (TGF beta-3) in thermo-reversible hydrogel constructs embedded with rabbit chondrocytes (2006) Biomaterials, 27, pp. 5951-5957; Gong, Y., He, L., Li, J., Zhou, Q., Ma, Z., Gao, C., Hydrogel-filled polylactide porous scaffolds for cartilage tissue engineering (2007) J Biomed Mater Res B Appl Biomater, 82, pp. 192-204; Ma, Z., Gao, C., Gong, Y., Shen, J., Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor (2005) Biomaterials, 26, pp. 1253-1259; Kojima, K., Bonassar, L.J., Ignotz, R.A., Syed, K., Cortiella, J., Vacanti, C.A., Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea (2003) Ann Thorac Surg, 76, pp. 1884-1888; Kojima, K., Bonassar, L.J., Roy, A.K., Mizuno, H., Cortiella, J., Vacanti, C.A., A composite tissue-engineered trachea using sheep nasal chondrocyte and epithelial cells (2003) Faseb J, 17, pp. 823-828; Kojima, K., Bonassar, L.J., Roy, A.K., Vacand, C.A., Cortiella, J., Autologous tissue-engineered trachea with sheep nasal chondrocytes (2002) J Thorac Cardiovasc Surg, 123, pp. 1177-1184; Kojima, K., Ignotz, R.A., Kushibiki, T., Tinsley, K.W., Tabata, Y., Vacanti, C.A., Tissue-engineered trachea from sheep marrow stromal cells with transforming growth factor beta2 released from biodegradable microspheres in a nude rat recipient (2004) J Thorac Cardiovasc Surg, 128, pp. 147-153; Nishida, T., Kubota, S., Kojima, S., Kuboki, T., Nakao, K., Kushibiki, T., Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor) (2004) J Bone Miner Res, 19, pp. 1308-1319; Meyer, U., Wiesmann, H.P., (2006) Bone and Cartilage Engineering, , Springer, Heidelberg; Tessmar, J.K., Gopferich, A.M., Matrices and scaffolds for protein delivery in tissue engineering (2007) Adv Drug Deliv Rev, 59, pp. 274-291; Whalen, G.F., Shing, Y., Folkman, J., The fate of intravenously administered bFGF and the effect of heparin (1989) Growth Factors, 1, pp. 157-164; Konrad, M.W., Hemstreet, G., Hersh, E.M., Mansell, P.W., Mertelsmann, R., Kolitz, J.E., Pharmacokinetics of recombinant interleukin 2 in humans (1990) Cancer Res, 50, pp. 2009-2017; Poduslo, J.F., Curran, G.L., Berg, C.T., Macromolecular permeability across the blood-nerve and blood-brain barriers (1994) Proc Natl Acad Sci USA, 91, pp. 5705-5709; Zioncheck, T.F., Chen, S.A., Richardson, L., Mora-Worms, M., Lucas, C., Lewis, D., Pharmacokinetics and tissue distribution of recombinant human transforming growth factor beta 1 after topical and intravenous administration in male rats (1994) Pharm Res, 11, pp. 213-220
PY - 2008
Y1 - 2008
N2 - Tissue engineering is an exciting new cross-disciplinary methodology which applies the principles of engineering and structure-function relationships between normal and pathological tissues to develop biological substitute to restore, maintain or improve tissue function. Tissue engineering therefore involves a melange of approaches encompassing developmental biology, tissue mechanics, medicine, cell differentiation and survival biology, mechanostransduction and nano-fabrication technology. The central tissue of interest in this review is cartilage. Traumatic injuries, congenital abnormalities and age-related degenerative diseases can all lead to cartilage loss; however, the low cell density and very limited self-renewal capacity of cartilage necessitate the development of effective therapeutic repair strategies for this tissue. The ontogeny of the chondrocyte, which is the cell that provides the biosynthetic machinery for all the component parts of cartilage, is discussed, since an understanding of cartilage development is central to the maintenance of a chondrocytic phenotype in any strategy aiming to produce a replacement cartilage. A plethora of matrices have been developed for cartilage engineering approaches and many of these are discussed and their in vitro and in vivo applications covered in this review. Tissue engineering is entering an exciting era; significant advances have been made; however, many technical challenges remain to be solved before this technology becomes widely applicable across all areas of cartilage repair biology. © 2008 Society of Chemical Industry.
AB - Tissue engineering is an exciting new cross-disciplinary methodology which applies the principles of engineering and structure-function relationships between normal and pathological tissues to develop biological substitute to restore, maintain or improve tissue function. Tissue engineering therefore involves a melange of approaches encompassing developmental biology, tissue mechanics, medicine, cell differentiation and survival biology, mechanostransduction and nano-fabrication technology. The central tissue of interest in this review is cartilage. Traumatic injuries, congenital abnormalities and age-related degenerative diseases can all lead to cartilage loss; however, the low cell density and very limited self-renewal capacity of cartilage necessitate the development of effective therapeutic repair strategies for this tissue. The ontogeny of the chondrocyte, which is the cell that provides the biosynthetic machinery for all the component parts of cartilage, is discussed, since an understanding of cartilage development is central to the maintenance of a chondrocytic phenotype in any strategy aiming to produce a replacement cartilage. A plethora of matrices have been developed for cartilage engineering approaches and many of these are discussed and their in vitro and in vivo applications covered in this review. Tissue engineering is entering an exciting era; significant advances have been made; however, many technical challenges remain to be solved before this technology becomes widely applicable across all areas of cartilage repair biology. © 2008 Society of Chemical Industry.
KW - Cartilage
KW - Chondrocytes
KW - Matrices
KW - Tissue engineering
U2 - 10.1002/jctb.1857
DO - 10.1002/jctb.1857
M3 - Journal article
SN - 0268-2575
VL - 83
SP - 444
EP - 463
JO - Journal of Chemical Technology and Biotechnology
JF - Journal of Chemical Technology and Biotechnology
IS - 4
ER -