Thermal Giant Gravitons

Jácome Saldanha N de O B Armas, Troels Harmark, Niels Anne Jacob Obers, Marta Orselli, Andreas Vigand Pedersen

20 Citationer (Scopus)

Abstract

We study the giant graviton solution as the AdS 5 × S 5 background is heated up to finite temperature. The analysis employs the thermal brane probe technique based on the blackfold approach. We focus mainly on the thermal giant graviton corresponding to a thermal D3-brane probe wrapped on an S 3 moving on the S 5 of the background at finite temperature. We find several interesting new effects, including that the thermal giant graviton has a minimal possible value for the angular momentum and correspondingly also a minimal possible radius of the S 3. We compute the free energy of the thermal giant graviton in the low temperature regime, which potentially could be compared to that of a thermal state on the gauge theory side. Moreover, we analyze the space of solutions and stability of the thermal giant graviton and find that, in parallel with the extremal case, there are two available solutions for a given temperature and angular momentum, one stable and one unstable. In order to write down the equations of motion, action and conserved charges for the thermal giant graviton we present a slight generalization of the blackfold formalism for charged black branes. Finally, we also briey consider the thermal giant graviton moving in the AdS 5 part.

OriginalsprogEngelsk
TidsskriftJournal of High Energy Physics (Online)
Vol/bind2012
Sider (fra-til)123
Antal sider43
ISSN1126-6708
DOI
StatusUdgivet - 28 nov. 2012

Fingeraftryk

Dyk ned i forskningsemnerne om 'Thermal Giant Gravitons'. Sammen danner de et unikt fingeraftryk.

Citationsformater