The Use of 3D Printed Molds to Cast Tablets with a Designed Disintegration Profile

Adil Ajmal, Ammon Meskarzadeh, Natalja Genina, Cosima Hirschberg, Johan Peter Boetker, Jukka Rantanen

    4 Citationer (Scopus)

    Abstract

    Development of new product design principles is crucial for obtaining pharmaceutical products with controlled functionality. Four different molds were designed using a computer-aided design (CAD) software and 3D printed with polylactic acid (PLA). A hydroxypropyl methylcellulose (HPMC) and polyethylene glycol (PEG)-based formulation containing indomethacin as the active pharmaceutical ingredient (API) was casted into the molds. Each mold produced a tablet that was designed to disintegrate into a defined number of sections (2, 4, and 6). This was achieved by incorporating break lines (regions that were significantly thinner than the remainder of the tablet) to control the disintegration process. Disintegration and drug release from these designed tablets was contrasted with a casted tablet without break lines. Disintegration studies confirmed that the casted tablets disintegrated according to their design. Drug-release studies meanwhile demonstrated that tablets with a greater number of sections released the API at a faster rate than those with fewer sections; for example, the 6-sectioned tablet released the API at twice the rate of the tablet without any break lines. It is expected that by using this concept, it would be possible to produce tablets with a designed disintegration profile, which could potentially allow the tailoring of the drug release.

    OriginalsprogEngelsk
    Artikelnummer127
    TidsskriftAAPS PharmSciTech
    Vol/bind20
    Udgave nummer3
    Antal sider10
    ISSN1530-9932
    DOI
    StatusUdgivet - 1 apr. 2019

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'The Use of 3D Printed Molds to Cast Tablets with a Designed Disintegration Profile'. Sammen danner de et unikt fingeraftryk.

    Citationsformater